The Two-Fold Singularity of Discontinuous Vector Fields

被引:64
|
作者
Jeffrey, M. R. [1 ]
Colombo, A. [2 ]
机构
[1] Univ Bristol, Appl Nonlinear Math Grp, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Politecn Milan, DEI, I-20133 Milan, Italy
来源
关键词
Filippov; sliding; singularity; nonsmooth; discontinuous; BIFURCATIONS; STABILITY;
D O I
10.1137/08073113X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When a vector field in R-3 is discontinuous on a smooth codimension one surface, it may be simultaneously tangent to both sides of the surface at generic isolated points (singularities). For a piecewise-smooth dynamical system governed by the vector field, we show that the local dynamics depends on a single quantity-the jump in direction of the vector field through the singularity. This quantity controls a bifurcation, in which the initially repelling singularity becomes the apex of a pair of parabolic invariant surfaces. The surfaces are smooth except where they intersect the discontinuity surface, and they divide local space into regions of attraction to, and repulsion from, the singularity.
引用
收藏
页码:624 / 640
页数:17
相关论文
共 50 条
  • [1] Structural Stability of the Two-Fold Singularity
    Fernandez-Garcia, S.
    Angulo Garcia, D.
    Olivar Tost, G.
    di Bernardo, M.
    Jeffrey, M. R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1215 - 1230
  • [2] Two-fold singularity in nonsmooth electrical systems
    di Bernardo, Mario
    Colombo, Alessandro
    Fossas, Enric
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 2713 - 2716
  • [3] PIECEWISE SMOOTH REVERSIBLE DYNAMICAL SYSTEMS AT A TWO-FOLD SINGULARITY
    Jacquemard, A.
    Teixeira, M. A.
    Tonon, D. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (08):
  • [4] Bifurcations at a degenerate two-fold singularity and crossing limit cycles
    Cristiano, Rony
    Pagano, Daniel J.
    Carvalho, Tiago
    Tonon, Durval J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 268 (01) : 115 - 140
  • [5] Nondeterministic Chaos, and the Two-fold Singularity in Piecewise Smooth Flows
    Colombo, Alessandro
    Jeffrey, Mike R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (02): : 423 - 451
  • [6] Stability conditions in piecewise smooth dynamical systems at a two-fold singularity
    A. Jacquemard
    M. A. Teixeira
    D. J. Tonon
    Journal of Dynamical and Control Systems, 2013, 19 : 47 - 67
  • [7] Stability conditions in piecewise smooth dynamical systems at a two-fold singularity
    Jacquemard, A.
    Teixeira, M. A.
    Tonon, D. J.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (01) : 47 - 67
  • [8] The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems
    Novaes, Douglas D.
    Teixeira, Marco A.
    Zeli, Iris O.
    NONLINEARITY, 2018, 31 (05) : 2083 - 2104
  • [9] The two-fold singularity of nonsmooth flows: Leading order dynamics in n-dimensions
    Colombo, Alessandro
    Jeffrey, Mike R.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 263 : 1 - 10
  • [10] The Two-Fold Global Turn
    Lenssen, Anneka
    ARTMARGINS, 2018, 7 (01) : 83 - 99