Automatic knot segmentation in CT images of wet softwood logs using a tangential approach

被引:17
|
作者
Roussel, Jean-Romain [1 ]
Mothe, Frederic [1 ,2 ]
Kraehenbuehl, Adrien [3 ]
Kerautret, Bertrand [3 ]
Debled-Rennesson, Isabelle [3 ]
Longuetaud, Fleur [1 ,2 ]
机构
[1] INRA, UMR1092, LERFoB, F-54280 Champenoux, France
[2] AgroParisTech, UMR1092, LERFoB, F-54000 Nancy, France
[3] Univ Lorraine, LORIA, UMR CNRS 7503, F-54506 Vandoeuvre Les Nancy, France
关键词
Computed Tomography; Sapwood; Knottiness; Algorithm; Wood quality; TOMOGRAPHY; WOOD; L; ALGORITHM; PITH;
D O I
10.1016/j.compag.2014.03.004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Computed Tomography (CT) is more and more used in forestry science and wood industry to explore internal tree stem structure in a non-destructive way. Automatic knot detection and segmentation in the presence of wet areas like sapwood for softwood species is a recurrent problem in the literature. This article describes an algorithm named TEKA able to segment knots even into sapwood and other wet areas by using parallel tangential slices into the log that enable to follow the knot from the stem pith to the bark. On each tangential slice, knot pith is detected, then knot diameter is estimated by analyzing gray level variations around the knot pith. A validation was performed on 125 knots from five softwood species. The CT slice resolution ranged from 0.4 to 0.8 mm/pixel with an interval between slices of 1.25 mm. Compared to manual diameter measurements performed on the same CT slices, the TEKA algorithm led to a RMSE of 3.37 mm and a bias of 0.81 mm, which is rather good compared to other algorithms working only in heartwood. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
  • [1] Knot segmentation in 3D CT images of wet wood
    Kraehenbuehl, Adrien
    Kerautret, Bertrand
    Debled-Rennesson, Isabelle
    Mothe, Frederic
    Longuetaud, Fleur
    [J]. PATTERN RECOGNITION, 2014, 47 (12) : 3852 - 3869
  • [2] Automatic Knot Detection in Coarse-Resolution Cone-Beam Computed Tomography Images of Softwood Logs
    Fredriksson, Magnus
    Cool, Julie
    Avramidis, Stavros
    [J]. FOREST PRODUCTS JOURNAL, 2019, 69 (03) : 185 - 187
  • [3] Robust Knot Segmentation by Knot Pith Tracking in 3D Tangential Images
    Krahenbuhl, Adrien
    Roussel, Jean-Romain
    Kerautret, Bertrand
    Debled-Rennesson, Isabelle
    Mothe, Frederic
    Longuetaud, Fleur
    [J]. COMPUTER VISION AND GRAPHICS, ICCVG 2016, 2016, 9972 : 581 - 593
  • [4] A Robust algorithm for knot segmentation in CT images
    Un algorithme robuste de segmentation des noeuds du bois sur des images obtenues par tomographie X
    [J]. 1600, Ecole Nationale du Genie Rural des Eaux et des Forets (68):
  • [5] Automatic Couinaud liver segmentation using CT images
    Oliveira, D. A. B.
    Feitosa, R. Q.
    Correi, M. M.
    [J]. COMPUTATIONAL VISION AND MEDICAL IMAGING PROCESSING, 2008, : 313 - +
  • [6] Automatic detection of pith on CT images of spruce logs
    Longuetaud, F
    Leban, JM
    Mothe, F
    Kerrien, E
    Berger, MO
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2004, 44 (02) : 107 - 119
  • [7] Automatic segmentation of bladder in CT images
    Shi, Feng
    Yang, Jie
    Zhu, Yue-min
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (02): : 239 - 246
  • [8] Automatic Liver Segmentation on CT Images
    Celik, Torecan
    Song, Hong
    Chen, Lei
    Yang, Jian
    [J]. SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 189 - 196
  • [9] Automatic segmentation of neck CT images
    Teng, Chia-Chi
    Shapiro, Linda G.
    Kalet, Ira
    [J]. 19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 442 - +