Coarse-grained stochastic processes for microscopic lattice systems

被引:92
|
作者
Katsoulakis, MA
Majda, AJ [1 ]
Vlachos, DG
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Ctr Atmospher & Ocean Sci, New York, NY 10012 USA
[4] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
[5] Univ Delaware, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA
关键词
D O I
10.1073/pnas.242741499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diverse scientific disciplines ranging from materials science to catalysis to biomolecular dynamics to climate modeling involve nonlinear interactions across a large range of physically significant length scales. Here a class of coarse-grained stochastic processes and corresponding Monte Carlo simulation methods, describing computationally feasible mesoscopic length scales, are derived directly from microscopic lattice systems. It is demonstrated below that the coarse-grained stochastic models can capture large-scale structures while retaining significant microscopic information. The requirement of detailed balance is used as a systematic design principle to guarantee correct noise fluctuations for the coarse-grained model. The coarse-grained stochastic algorithms provide large computational savings without increasing programming complexity or computer time per executive event compared to microscopic Monte Carlo simulations.
引用
收藏
页码:782 / 787
页数:6
相关论文
共 50 条