On a generalization of a theorem of Erdos and Fuchs

被引:10
|
作者
Tang, Min [1 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Erdos-Fuchs theorem; General sequences;
D O I
10.1016/j.disc.2009.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = {a(1), a(2), ...} (a(1) < a(2) < ...) be an infinite sequence of nonnegative integers, let k >= 2 be a fixed integer and denote by r(k)(A, n) the number of solutions of a(i1) + a(i2) + ... + a(ik) <= n. Montgomery and Vaughan proved that r(2)(A, n) = cn+o(n(1/4)) cannot hold for any constant c > 0. In this paper, we extend this result to k > 2. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6288 / 6293
页数:6
相关论文
共 50 条