On moments of folded and truncated multivariate Student-t distributions based on recurrence relations

被引:14
|
作者
Galarza, Christian E. [1 ]
Lin, Tsung-, I [2 ,3 ]
Wang, Wan-Lun [4 ]
Lachos, Victor H. [5 ]
机构
[1] Escuela Super Politecn Litoral, ESPOL, Fac Ciencias Nat & Matemat, Guayaquil, Ecuador
[2] Natl Chung Hsing Univ, Inst Stat, Taichung 402, Taiwan
[3] China Med Univ, Dept Publ Hlth, Taichung 404, Taiwan
[4] Feng Chia Univ, Grad Inst Stat & Actuarial Sci, Dept Stat, Taichung 40724, Taiwan
[5] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
基金
巴西圣保罗研究基金会;
关键词
EM algorithm; Folded multivariate Student-t distribution; Product moments; Truncated multivariate normal distribution; Truncated multivariate Student-t distribution;
D O I
10.1007/s00184-020-00802-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of the first two moments of the truncated multivariate Student-t distribution has attracted increasing attention from a wide range of applications. This paper develops recurrence relations for integrals that involve the density of multivariate Student-t distributions. The proposed techniques allow for fast computation of arbitrary-order product moments of folded and truncated multivariate Student-t distributions and offer explicit expressions of low-order moments of folded and truncated multivariate Student-t distributions. A real data example containing positive censored responses is applied to illustrate the effectiveness and importance of the proposed methods. An R MomTrunc package is developed and publicly available on the CRAN repository.
引用
收藏
页码:825 / 850
页数:26
相关论文
共 50 条
  • [1] On moments of folded and truncated multivariate Student-t distributions based on recurrence relations
    Christian E. Galarza
    Tsung-I Lin
    Wan-Lun Wang
    Víctor H. Lachos
    [J]. Metrika, 2021, 84 : 825 - 850
  • [2] Moments of truncated Student-t distribution
    Kim, Hea-Jung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (01) : 81 - 87
  • [3] Moments of truncated Student-t distribution
    Hea-Jung Kim
    [J]. Journal of the Korean Statistical Society, 2008, 37 : 81 - 87
  • [4] On Moments of Folded and Truncated Multivariate Normal Distributions
    Kan, Raymond
    Robotti, Cesare
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) : 930 - 934
  • [5] Multivariate Myriad Filters Based on Parameter Estimation of Student-t Distributions
    Laus, Friederike
    Steidl, Gabriele
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (04): : 1864 - 1904
  • [6] Efficient Sampling Methods for Truncated Multivariate Normal and Student-t Distributions Subject to Linear Inequality Constraints
    Li Y.
    Ghosh S.K.
    [J]. Journal of Statistical Theory and Practice, 2015, 9 (4) : 712 - 732
  • [7] EFFICIENT PROBABILITY ESTIMATION AND SIMULATION OF THE TRUNCATED MULTIVARIATE STUDENT-t DISTRIBUTION
    Botev, Zdravko I.
    L'Ecuyer, Pierre
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 380 - 391
  • [8] On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions
    Galarza Morales, Christian E.
    Matos, Larissa A.
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 455 - 465
  • [9] On moments of truncated multivariate normal/independent distributions
    Lin, Tsung-, I
    Wang, Wan-Lun
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 199
  • [10] Predictivistic characterizations of multivariate student-t models
    Loschi, RH
    Iglesias, PL
    Arellano-Valle, RB
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 85 (01) : 10 - 23