Mechanics Behavior Induced by Chemical Expansion for Oxide Anode of Solid Oxide Fuel Cells

被引:0
|
作者
Wang, Y. [1 ]
Zhu, S. [1 ]
Zhan, Z. [1 ,2 ]
Xia, C. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci SICCAS, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
关键词
Chemical Expansion; Fuel Cells; Mechanical Properties; Oxygen Diffusion Coefficient; Oxygen Surface Exchange Coefficient; ELECTRODES; RESISTANCE;
D O I
10.1002/fuce.201300180
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Oxide anodes of solid oxide fuel cells are usually stable in the redox cycling process. However, they may be subjected to mechanical stresses associated with chemical expansion due to the stoichiometrical variation. A novel method is presented to detect the mechanical stresses by combining the Fick's second law, oxygen surface exchange, and oxygen-ion diffusion properties. The surface tensile stress is weak for the small structural dimensions due to the short diffusion length. When the surface exchange kinetics is increased by means such as surface modification, the improved surface exchange rate may result in large mechanical stress and the stress-loading rate, and consequently, reduce the redox stability. A new modulus () is introduced to predict the mechanical behavior, and larger means higher mechanical stress. Finally, the prediction is experimentally confirmed with (La0.75Sr0.25)0.95Cr0.5Mn0.5O3- (LSCM) samples, where the fracture is related to its conductivity. It is found that porous LSCM has excellent stability in the atmosphere change process. However, fractures are observed with Ni impregnated porous LSCM due to the increased surface exchanged coefficient, which means larger .
引用
收藏
页码:372 / 377
页数:6
相关论文
共 50 条
  • [1] Oxide anode materials for solid oxide fuel cells
    Fergus, Jeffrey W.
    SOLID STATE IONICS, 2006, 177 (17-18) : 1529 - 1541
  • [2] A Highly Conductive Oxide Anode for Solid Oxide Fuel Cells
    Smith, Brandon H.
    Gross, Michael D.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (01) : B1 - B5
  • [3] On the polarization loss induced by thermal expansion in solid oxide fuel cells
    Niu, Yinghua
    Lv, Weiqiang
    Wen, Kechun
    Shi, Xingyi
    Luo, Ripeng
    He, Weidong
    SOLID STATE IONICS, 2017, 311 : 63 - 68
  • [4] Development of a multilayer anode for solid oxide fuel cells
    Müller, AC
    Herbstritt, D
    Ivers-Tiffée, E
    SOLID STATE IONICS, 2002, 152 : 537 - 542
  • [5] Impact of Anode Microstructure on Solid Oxide Fuel Cells
    Suzuki, Toshio
    Hasan, Zahir
    Funahashi, Yoshihiro
    Yamaguchi, Toshiaki
    Fujishiro, Yoshinobu
    Awano, Masanobu
    SCIENCE, 2009, 325 (5942) : 852 - 855
  • [6] RECONSTRUCTION OF ANODE NANOSTRUCTURES FOR SOLID OXIDE FUEL CELLS
    Wang, Yan-feng
    Yuan, Jinliang
    Sunden, Bengt
    Hu, Yu-li
    PROCEEDINGS OF THE ASME 11TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2013, 2014,
  • [7] Perovskite as anode materials for solid oxide fuel cells
    Zheng Yao
    Zhou Wei
    Ran Ran
    Shao Zongping
    PROGRESS IN CHEMISTRY, 2008, 20 (2-3) : 413 - 421
  • [8] Microchanneled anode supports of solid oxide fuel cells
    Dong, Dehua
    Shao, Xin
    Xie, Kui
    Hu, Xun
    Parkinson, Gordon
    Li, Chun-Zhu
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 42 : 64 - 67
  • [9] Anode supported solid oxide fuel cells (SOFC)
    Holtappels, Peter
    Vogt, Ulrich
    Gauckler, Ludwig
    McEvoy, Augustin J.
    Honegger, Kaspar
    EMPA (Swiss Federal Laboratories for Materials Testing and Research) Publication, 2002, (SPEC.RAPORT):
  • [10] Alternative anode materials for solid oxide fuel cells
    Goodenough, John B.
    Huang, Yun-Hui
    JOURNAL OF POWER SOURCES, 2007, 173 (01) : 1 - 10