On homogeneous Finsler spaces

被引:18
|
作者
Latifi, Dariush [1 ]
Razavi, Asadollah [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
Finsler homogeneous space; symmetric space; forward completeness; Randers space; flag curvature;
D O I
10.1016/S0034-4877(06)80026-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study homogeneous Finsler spaces and show that they are forward complete. As a special case we consider homogeneous Randers spaces and show that if these spaces have constant flag curvature then the underlying Riemannian space is locally symmetric. Also we extend some of classical results in Riemannian homogeneous spaces to those in homogeneous Finsler spaces.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [1] Homogeneous geodesics in homogeneous Finsler spaces
    Latifi, Dariush
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1421 - 1433
  • [2] NORMAL HOMOGENEOUS FINSLER SPACES
    Xu, Ming
    Deng, Shaoqiang
    [J]. TRANSFORMATION GROUPS, 2017, 22 (04) : 1143 - 1183
  • [3] NORMAL HOMOGENEOUS FINSLER SPACES
    MING XU
    SHAOQIANG DENG
    [J]. Transformation Groups, 2017, 22 : 1143 - 1183
  • [4] On the existence of homogeneous geodesic in homogeneous Finsler spaces
    Yan, Zaili
    Huang, Libing
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 264 - 267
  • [5] Flag curvatures of homogeneous Finsler spaces
    Huang L.
    [J]. European Journal of Mathematics, 2017, 3 (4) : 1000 - 1029
  • [6] Locally Symmetric Homogeneous Finsler Spaces
    Deng, Shaoqiang
    Wolf, Joseph A.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (18) : 4223 - 4242
  • [7] Naturally reductive homogeneous Finsler spaces
    Shaoqiang Deng
    Zixin Hou
    [J]. manuscripta mathematica, 2010, 131 : 215 - 229
  • [8] On the fundamental equations of homogeneous Finsler spaces
    Huang, Libing
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 40 : 187 - 208
  • [9] Naturally Reductive Homogeneous Finsler Spaces
    Mojtaba Parhizkar
    [J]. Vietnam Journal of Mathematics, 2022, 50 : 205 - 215
  • [10] Homogeneous Finsler spaces of negative curvature
    Deng, Shaoqiang
    Hou, Zixin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 657 - 664