An efficient clustering scheme using support vector methods

被引:16
|
作者
Nath, J. Saketha [1 ]
Shevade, S. K.
机构
[1] Indian Inst Sci, Supercomp Educ & Res Ctr, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
clustering; support vector machines; R*-tree;
D O I
10.1016/j.patcog.2006.03.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector clustering involves three steps-solving an optimization problem, identification of clusters and tuning of hyper-parameters. In this paper, we introduce a pre-processing step that eliminates data points from the training data that are not crucial for clustering. Pre-processing is efficiently implemented using the R*-tree data structure. Experiments on real-world and synthetic datasets show that pre-processing drastically decreases the run-time of the clustering algorithm. Also, in many cases reduction in the number of support vectors is achieved. Further, we suggest an improvement for the step of identification of clusters. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1473 / 1480
页数:8
相关论文
共 50 条
  • [1] A NOVEL SCHEME FOR ACCELERATING SUPPORT VECTOR CLUSTERING
    Ping, Yuan
    Zhou, Yajian
    Yang, Yixian
    [J]. COMPUTING AND INFORMATICS, 2012, 31 (03) : 613 - 638
  • [2] Cyclosporine concentration prediction using clustering and support vector regression methods
    Camps-Valls, G
    Soria-Olivas, E
    Pérez-Ruixo, JJ
    Pérez-Cruz, F
    Figueiras-Vidal, AR
    Artés-Rodríguez, A
    [J]. ELECTRONICS LETTERS, 2002, 38 (12) : 568 - 570
  • [3] Forecasting financial series using clustering methods and support vector regression
    Vilela, Lucas F. S.
    Leme, Rafael C.
    Pinheiro, Carlos A. M.
    Carpinteiro, Otavio A. S.
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (02) : 743 - 773
  • [4] Forecasting financial series using clustering methods and support vector regression
    Lucas F. S. Vilela
    Rafael C. Leme
    Carlos A. M. Pinheiro
    Otávio A. S. Carpinteiro
    [J]. Artificial Intelligence Review, 2019, 52 : 743 - 773
  • [5] Efficient Cluster Labeling for Support Vector Clustering
    D'Orangeville, V.
    Mayers, M. Andre
    Monga, M. Ernest
    Wang, M. Shengrui
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (11) : 2494 - 2506
  • [6] An Efficient Data Preprocessing Procedure for Support Vector Clustering
    Wang, Jeen-Shing
    Chiang, Jen-Chieh
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2009, 15 (04) : 705 - 721
  • [7] An efficient scheme for automatic web pages categorization using the support vector machine
    Bhalla, Vinod Kumar
    Kumar, Neeraj
    [J]. NEW REVIEW OF HYPERMEDIA AND MULTIMEDIA, 2016, 22 (03) : 223 - 242
  • [8] A clustering-based sales forecasting scheme using support vector regression for computer server
    Dai, Wenseng
    Chuang, Yang-Yu
    Lu, Chi-Jie
    [J]. 2ND INTERNATIONAL MATERIALS, INDUSTRIAL, AND MANUFACTURING ENGINEERING CONFERENCE, MIMEC2015, 2015, 2 : 82 - 86
  • [9] Marketing segmentation using support vector clustering
    Huang, Jih-Jeng
    Tzeng, Gwo-Hshiung
    ong, Chorng-Shy Ong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) : 313 - 317
  • [10] Efficient Training Support Vector Clustering With Appropriate Boundary Information
    Ping, Yuan
    Hao, Bin
    Li, Huina
    Lai, Yuping
    Guo, Chun
    Ma, Hui
    Wang, Baocang
    Hei, Xiali
    [J]. IEEE ACCESS, 2019, 7 : 146964 - 146978