An automatic fuzzy c-means algorithm for image segmentation

被引:41
|
作者
Li, Yan-ling [1 ]
Shen, Yi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Syst Engn, Dept Control Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Image segmentation; Fuzzy c-means; Fuzzy clustering; K-means; Spatial information; CLUSTER VALIDITY;
D O I
10.1007/s00500-009-0442-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm must be estimated by expertise users to determine the cluster number. So, we propose an automatic fuzzy clustering algorithm (AFCM) for automatically grouping the pixels of an image into different homogeneous regions when the number of clusters is not known beforehand. In order to get better segmentation quality, this paper presents an algorithm based on AFCM algorithm, called automatic modified fuzzy c-means cluster segmentation algorithm (AMFCM). AMFCM algorithm incorporates spatial information into the membership function for clustering. The spatial function is the weighted summation of the membership function in the neighborhood of each pixel under consideration. Experimental results show that AMFCM algorithm not only can spontaneously estimate the appropriate number of clusters but also can get better segmentation quality.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [1] An automatic fuzzy c-means algorithm for image segmentation
    Yan-ling Li
    Yi Shen
    [J]. Soft Computing, 2010, 14 : 123 - 128
  • [2] A kernelized fuzzy c-means algorithm for automatic magnetic resonance image segmentation
    Zanaty, E. A.
    Aljahdali, Sultan
    Debnath, Narayan
    [J]. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2009, 9 (01) : 5123 - 5136
  • [3] Fast and Automatic Fuzzy C-Means Clustering Color Image Segmentation Algorithm
    Wang Chao
    Wang Yongshun
    Di Fan
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [4] Pythagorean fuzzy C-means algorithm for image segmentation
    Ma, Rong
    Zeng, Wenyi
    Song, Guangcheng
    Yin, Qian
    Xu, Zeshui
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (03) : 1223 - 1243
  • [5] PSO based Fuzzy C-Means algorithm for image segmentation
    Li, Yanling
    Shen, Yi
    [J]. Journal of Computational Information Systems, 2008, 4 (05): : 1885 - 1890
  • [6] Modified Fast Fuzzy C-means Algorithm For Image Segmentation
    Guo, Rong-chuan
    Ye, Shui-sheng
    Quan, Min
    Shi, Hai-xia
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY, VOL II, 2009, : 39 - 43
  • [7] Spatial α-Trimmed Fuzzy C-Means Algorithm to Image Segmentation
    Vela-Rincon, Virna V.
    Mujica-Vargas, Dante
    Mejia Lavalle, Manuel
    Magadan Salazar, Andrea
    [J]. PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 118 - 128
  • [8] Parallel hesitant fuzzy C-means algorithm to image segmentation
    Vela-Rincon, Virna V.
    Mujica-Vargas, Dante
    de Jesus Rubio, Jose
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (01) : 73 - 81
  • [9] An Image Segmentation Algorithm Based On Fuzzy C-Means Clustering
    Zhang Xinbo
    Jiang Li
    [J]. PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 123 - 126
  • [10] A novel fuzzy c-means clustering algorithm for image segmentation
    Yang, Yong
    Huang, Shuying
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2897 - 2901