QUASI-BIRTH-AND-DEATH PROCESSES, LATTICE PATH COUNTING, AND HYPERGEOMETRIC FUNCTIONS

被引:17
|
作者
Van Leeuwaarden, Johan S. H. [1 ]
Squillante, Mark S. [3 ]
Winands, Erik M. M. [2 ,4 ]
机构
[1] EURANDOM, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[3] IBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USA
[4] Eindhoven Univ Technol, Dept Technol Management, NL-5600 MB Eindhoven, Netherlands
关键词
Quasi-birth-and-death process; matrix-analytic methods; rate matrix; lattice path counting; hypergeometric function;
D O I
10.1239/jap/1245676103
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider a class of quasi-birth-and-death processes for which explicit solutions can be obtained for the rate matrix R and the associated matrix G. The probabilistic interpretations of these matrices allow us to describe their elements in terms of paths on the two-dimensional lattice. Then determining explicit expressions for the matrices becomes equivalent to solving a lattice path counting problem, the solution of which is derived using path decomposition, Bernoulli excursions, and hypergeometric functions. A few applications are provided, including classical models for which we obtain some new results.
引用
收藏
页码:507 / 520
页数:14
相关论文
共 50 条
  • [1] THE QUASI-STATIONARY BEHAVIOR OF QUASI-BIRTH-AND-DEATH PROCESSES
    Bean, N. G.
    Bright, L.
    Latouche, G.
    Pearce, C. E. M.
    Pollett, P. K.
    Taylor, P. G.
    ANNALS OF APPLIED PROBABILITY, 1997, 7 (01): : 134 - 155
  • [2] APPROXIMATIONS TO QUASI-BIRTH-AND-DEATH PROCESSES WITH INFINITE BLOCKS
    Bean, Nigel
    Latouche, Guy
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (04) : 1102 - 1125
  • [3] Exploiting restricted transitions in Quasi-Birth-and-Death processes
    Perez, Juan F.
    Van Houdt, Benny
    SIXTH INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, PROCEEDINGS, 2009, : 123 - 132
  • [4] Quasi-birth-and-death processes with an explicit rate matrix
    van Leeuwaarden, JSH
    Winands, EMM
    STOCHASTIC MODELS, 2006, 22 (01) : 77 - 98
  • [5] Quasi-birth-and-death processes and multivariate orthogonal polynomials
    Fernandez, Lidia
    de la Iglesia, Manuel D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)
  • [6] Time to congestion in Homogeneous Quasi-Birth-and-Death Processes
    Marie-Ange Remiche
    OPSEARCH, 1998, 35 (3) : 169 - 192
  • [7] On symbolic RG factorization of quasi-birth-and-death processes
    Avram, Florin
    Chedom, Donatien Fotso
    TOP, 2011, 19 (02) : 317 - 335
  • [8] On symbolic RG factorization of quasi-birth-and-death processes
    Florin Avram
    Donatien Fotso Chedom
    TOP, 2011, 19 : 317 - 335
  • [9] Quasi-birth-and-death processes with level-geometric distribution
    Dayar, T
    Quessette, F
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) : 281 - 291
  • [10] Numerical solution of level dependent quasi-birth-and-death processes
    Baumann, Hendrik
    Sandmann, Werner
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1555 - 1563