Existence of positive solutions for nonlinear elliptic equations with convection terms

被引:8
|
作者
Motreanu, D. [1 ]
Tanaka, M. [2 ]
机构
[1] Univ Perpignan, Dept Math, F-66860 Perpignan, France
[2] Tokyo Univ Sci, Dept Math, Shinjyuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
关键词
Nonlinear elliptic equation; Convection term; Strong maximum principle; STRONG MAXIMUM PRINCIPLE; DEPENDENCE; GRADIENT;
D O I
10.1016/j.na.2016.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of positive solutions for the equation -Sigma(N)(i=1) partial derivative/partial derivative x(i)ai(x, u, del u) = f (x, u, del u) in Omega under the Dirichlet boundary condition, where the essential point is the dependence of the terms of the elliptic equation on the solution u and its gradient del u. We develop an approach based on approximate solutions and on a new strong maximum principle. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 60
页数:23
相关论文
共 50 条