Electroosmotic and pressure-driven slip flow of fractional viscoelastic fluids in microchannels

被引:6
|
作者
An, Shujuan [1 ]
Tian, Kai [1 ]
Ding, Zhaodong [1 ]
Jian, Yongjun [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroosmotic flow; Caputo fractional derivatives; Laplace transform; Numerical solutions; ELECTROPHORETIC SEPARATION; MODEL;
D O I
10.1016/j.amc.2022.127073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate microchannel under the combined effect of electroosmotic and pressure gradient forcings. Analytical solutions for velocity and potential distributions are derived using the Debye-Hackel linearization, Laplace transform, and residue theorem. Numerical solutions are also provided based on the finite difference method. The process through which the velocity and flow rate attain a steady state is related to the governing groups, including the fractional calculus parameter alpha, slip coefficient L , Deborah number De , normalized electrokinetic width K and ratio 17 of the pressure to electroosmotic driving forces. Results show that an increase in alpha, De , L or 17 increases the time required to reach a steady state. The steady flow rate depends on L and K but is independent of alpha and De . For the same slip coefficient, increases in alpha, De or K increase the slip velocity at the wall. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Pressure-driven electrokinetic slip flows of viscoelastic fluids in hydrophobic microchannels
    A. M. Afonso
    L. L. Ferrás
    J. M. Nóbrega
    M. A. Alves
    F. T. Pinho
    [J]. Microfluidics and Nanofluidics, 2014, 16 : 1131 - 1142
  • [2] Pressure-driven electrokinetic slip flows of viscoelastic fluids in hydrophobic microchannels
    Afonso, A. M.
    Ferras, L. L.
    Nobrega, J. M.
    Alves, M. A.
    Pinho, F. T.
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2014, 16 (06) : 1131 - 1142
  • [3] Effect of pressure-driven flow on electroosmotic flow and electrokinetic mass transport in microchannels
    Yuan, Shuai
    Zhou, Mingyong
    Liu, Xijiang
    Jiang, Bingyan
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 206
  • [4] Analytical solution of mixed electroosmotic and pressure-driven flow in rectangular microchannels
    Yang, Dayong
    [J]. MEMS/NEMS NANO TECHNOLOGY, 2011, 483 : 679 - 683
  • [5] Analysis of combined pressure-driven electroosmotic flow through square microchannels
    Monazami, Reza
    Manzari, Mehrdad T.
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2007, 3 (01) : 123 - 126
  • [6] Analysis of combined pressure-driven electroosmotic flow through square microchannels
    Reza Monazami
    Mehrdad T. Manzari
    [J]. Microfluidics and Nanofluidics, 2007, 3 : 123 - 126
  • [7] Pressure-driven electrokinetic slip-flow in planar microchannels
    Jamaati, J.
    Niazmand, H.
    Renksizbulut, M.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (07) : 1165 - 1174
  • [8] Liquid slip and thermal effects on electroosmotic and pressure-driven flow in a microchannel
    Ngoma, Guyh Dituba
    Erchiqui, Fouad
    [J]. PROCEEDINGS OF THE 17TH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2006, : 360 - +
  • [9] Characteristics of combined electroosmotic flow and pressure-driven flow in microchannels with complex-wavy surfaces
    Cho, Ching-Chang
    Chen, Chieh-Li
    Chen, Cha'o-Kuang
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 61 : 94 - 105
  • [10] Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels
    Shamloo, Amir
    Merdasi, Arshia
    Vatankhah, Parham
    [J]. JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2016, 8 (02)