Estimating individual fitness in the wild using capture-recapture data

被引:7
|
作者
Gimenez, Olivier [1 ]
Gaillard, Jean-Michel [2 ]
机构
[1] Univ Montpellier 3, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,UMR 5175,Montpellier EPHE, Campus CNRS, Montpellier 5, France
[2] Univ Claude Bernard Lyon 1, Lab Biomet & Biol Evolut, UMR 5558, Bat 711,43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Delifing; Growth rate; Imperfect detection; Lifetime reproductive success; Mark-recapture; State-space models; POPULATION-GROWTH; TRADE-OFFS; SURVIVAL; AGE; HETEROGENEITY; REPRODUCTION; FEMALES; COHORT; COSTS; EVOLUTIONARY;
D O I
10.1007/s10144-017-0598-x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The concept of Darwinian fitness is central in evolutionary ecology, and its estimation has motivated the development of several approaches. However, measuring individual fitness remains challenging in empirical case studies in the wild. Measuring fitness requires a continuous monitoring of individuals from birth to death, which is very difficult to get in part because individuals may or may not be controlled at each reproductive event and recovered at death. Imperfect detection hampers keeping track of mortality and reproductive events over the whole lifetime of individuals. We propose a new statistical approach to estimate individual fitness while accounting for imperfect detection. Based on hidden process modelling of longitudinal data on marked animals, we show that standard metrics to quantify fitness, namely lifetime reproductive success, individual growth rate and lifetime individual contribution to population growth, can be extended to cope with imperfect detection inherent to most monitoring programs in the wild. We illustrate our approach using data collected on individual roe deer in an intensively monitored population.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 50 条
  • [1] ESTIMATING SELECTION ON QUANTITATIVE TRAITS USING CAPTURE-RECAPTURE DATA
    KINGSOLVER, JG
    SMITH, SG
    [J]. EVOLUTION, 1995, 49 (02) : 384 - 388
  • [2] Estimating the size of an open population using sparse capture-recapture data
    Huggins, Richard
    Stoklosa, Jakub
    Roach, Cameron
    Yip, Paul
    [J]. BIOMETRICS, 2018, 74 (01) : 280 - 288
  • [3] Capture-recapture using multiple data sources: estimating the prevalence of diabetes
    Cameron, Claire M.
    Coppell, Kirsten J.
    Fletcher, David J.
    Sharples, Katrina J.
    [J]. AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, 2012, 36 (03) : 223 - 228
  • [4] Estimating dispersal among numerous sites using capture-recapture data
    Lagrange, Pamela
    Pradel, Roger
    Belisle, Marc
    Gimenez, Olivier
    [J]. ECOLOGY, 2014, 95 (08) : 2316 - 2323
  • [5] Analysis of Capture-Recapture Models with Individual Covariates Using Data Augmentation
    Royle, J. Andrew
    [J]. BIOMETRICS, 2009, 65 (01) : 267 - 274
  • [6] Estimating Homelessness in the Netherlands Using a Capture-Recapture Approach
    A. M. Coumans
    M. Cruyff
    P. G. M. Van der Heijden
    J. Wolf
    H. Schmeets
    [J]. Social Indicators Research, 2017, 130 : 189 - 212
  • [7] Estimating Homelessness in the Netherlands Using a Capture-Recapture Approach
    Coumans, A. M.
    Cruyff, M.
    Van der Heijden, P. G. M.
    Wolf, J.
    Schmeets, H.
    [J]. SOCIAL INDICATORS RESEARCH, 2017, 130 (01) : 189 - 212
  • [8] Estimating survival from joint analysis of resighting and radiotelemetry capture-recapture data for wild animals
    Nasution, MD
    Brownie, C
    Pollock, KH
    Bennetts, RE
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2001, 6 (04) : 461 - 478
  • [9] Using simulation to compare methods for estimating density from capture-recapture data
    Ivan, Jacob S.
    White, Gary C.
    Shenk, Tanya M.
    [J]. ECOLOGY, 2013, 94 (04) : 817 - 826
  • [10] Estimating incidence of stroke using capture-recapture models
    Tilling, K
    Sterne, JA
    Wolfe, CDA
    [J]. CIRCULATION, 2001, 103 (09) : 1361 - 1361