Hecke operators on certain subspaces of integral weight modular forms

被引:2
|
作者
Boylan, Matthew [1 ]
Brown, Kenny [2 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Cyan Inc, Petaluma, CA 94954 USA
关键词
Modular forms; Hecke operators; Dedekind eta-function; eigenform;
D O I
10.1142/S1793042114500614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent works of F. G. Garvan ([Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank, Int. J. Number Theory 6(12) (2010) 281-309; MR2646759 (2011j:05032)]) and Y. Yang ([Congruences of the partition function, Int. Math. Res. Not. 2011(14) (2011) 3261-3288; MR2817679 (2012e:11177)] and [Modular forms for half-integral weights on SL2(Z), to appear in Nagoya Math. J.]) concern a certain family of half-integral weight Hecke-invariant subspaces which arise as multiples of fixed odd powers of the Dedekind eta-function multiplied by SL2(Z)-forms of fixed weight. In this paper, we study the image of Hecke operators on subspaces which arise as multiples of fixed even powers of eta multiplied by SL2(Z)-forms of fixed weight.
引用
收藏
页码:1909 / 1919
页数:11
相关论文
共 50 条