Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation

被引:25
|
作者
Berger, Robert F. [1 ]
机构
[1] Western Washington Univ, Dept Chem, Bellingham, WA 98225 USA
关键词
band gap; computational chemistry; DFT; halide perovskites; METHYLAMMONIUM LEAD IODIDE; ORGANIC-INORGANIC PEROVSKITES; DENSITY-FUNCTIONAL THEORY; PHASE-TRANSITIONS; LOW-COST; OPTICAL-PROPERTIES; BAND-GAPS; LIGHT; SEMICONDUCTORS; TRANSPORT;
D O I
10.1002/chem.201706126
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the current decade, perovskite solar cell research has emerged as a remarkably active, promising, and rapidly developing field. Alongside breakthroughs in synthesis and device engineering, halide perovskite photovoltaic materials have been the subject of predictive and explanatory computational work. In this Minireview, we focus on a subset of this computation: density functional theory (DFT)-based work highlighting the ways in which the electronic structure and band gap of this class of materials can be tuned via changes in atomic structure. We distill this body of computational literature into a set of underlying design principles for the band gap engineering of these materials, and rationalize these principles from the viewpoint of band-edge orbital character. We hope that this perspective provides guidance and insight toward the rational design and continued improvement of perovskite photovoltaics.
引用
收藏
页码:8708 / +
页数:9
相关论文
共 50 条
  • [1] Atomic structure and electronic properties of lead and tin based hybrid halide perovskite surface for photovoltaic applications
    Khanal, Rabi
    Ayers, Nicholas
    Banerjee, Soumik
    Choudhury, Samrat
    [J]. AIP ADVANCES, 2019, 9 (08)
  • [2] Recent research progress on optimal design of halide perovskite photovoltaic materials
    Zhao Dian-long
    Li Tian-shu
    Xu Qiao-ling
    Wang Xue-ting
    Zhang Li-jun
    [J]. CHINESE OPTICS, 2019, 12 (05) : 964 - 992
  • [3] Charge separation in nanoscale photovoltaic materials: recent insights from first-principles electronic structure theory
    Kanai, Yosuke
    Wu, Zhigang
    Grossman, Jeffrey C.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (06) : 1053 - 1061
  • [4] Halide-Dependent Electronic Structure of Organolead Perovskite Materials
    Buin, Andrei
    Comin, Riccardo
    Xu, Jixian
    Ip, Alexander H.
    Sargent, Edward H.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (12) : 4405 - 4412
  • [5] Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy
    Zhang, Wei
    Ono, Luis K.
    Xue, Jiamin
    Qi, Yabing
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (05)
  • [6] A DFT study of the electronic structure, optical, and thermoelectric properties of halide perovskite KGeI3-xBrx materials: photovoltaic applications
    Hamideddine, I.
    Zitouni, H.
    Tahiri, N.
    El Bounagui, O.
    Ez-Zahraouy, H.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (06):
  • [7] A DFT study of the electronic structure, optical, and thermoelectric properties of halide perovskite KGeI3-xBrx materials: photovoltaic applications
    I. Hamideddine
    H. Zitouni
    N. Tahiri
    O. El Bounagui
    H. Ez-Zahraouy
    [J]. Applied Physics A, 2021, 127
  • [8] Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers
    Brivio, Federico
    Butler, Keith T.
    Walsh, Aron
    van Schilfgaarde, Mark
    [J]. PHYSICAL REVIEW B, 2014, 89 (15):
  • [9] Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials
    Misra, Ravi K.
    Ciammaruchi, Laura
    Aharon, Sigalit
    Mogilyansky, Dmitry
    Etgar, Lioz
    Visoly-Fisher, Iris
    Katz, Eugene A.
    [J]. CHEMSUSCHEM, 2016, 9 (18) : 2572 - 2577
  • [10] Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles
    Wang, Fei
    Tan, Mengping
    Li, Chong
    Niu, Chunyao
    Zhao, Xin
    [J]. ORGANIC ELECTRONICS, 2019, 67 : 89 - 94