Superconducting qubit as a probe of squeezing in a nonlinear resonator

被引:9
|
作者
Boissonneault, Maxime [1 ,2 ]
Doherty, A. C. [3 ]
Ong, F. R. [4 ]
Bertet, P. [4 ]
Vion, D. [4 ]
Esteve, D. [4 ]
Blais, A. [1 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Laval, Calcul Quebec, Quebec City, PQ G1V 0A6, Canada
[3] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[4] CEA Saclay, DSM, IRAMIS, Quantron Grp,SPEC, F-91191 Gif Sur Yvette, France
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 02期
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
SINGLE-PHOTON; QUANTUM; AMPLIFICATION;
D O I
10.1103/PhysRevA.89.022324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In addition to their central role in quantum information processing, qubits have proven to be useful tools in a range of other applications such as enhanced quantum sensing and as spectrometers of quantum noise. Here we show that a superconducting qubit strongly coupled to a nonlinear resonator can act as a probe of quantum fluctuations of the intraresonator field. Building on previous work [M. Boissoneault et al., Phys. Rev. A 85, 022305 (2012)], we derive an effective master equation for the qubit which takes into account squeezing of the resonator field. We show how sidebands in the qubit excitation spectrum that are predicted by this model can reveal information about the squeezing factor r. The main results of this paper have already been successfully compared to experimental data [F. R. Ong et al., Phys. Rev. Lett. 110, 047001 (2013)], and we present here the details of the derivations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum Heating of a Nonlinear Resonator Probed by a Superconducting Qubit
    Ong, F. R.
    Boissonneault, M.
    Mallet, F.
    Doherty, A. C.
    Blais, A.
    Vion, D.
    Esteve, D.
    Bertet, P.
    PHYSICAL REVIEW LETTERS, 2013, 110 (04)
  • [2] Back-action of a driven nonlinear resonator on a superconducting qubit
    Boissonneault, Maxime
    Doherty, A. C.
    Ong, F. R.
    Bertet, P.
    Vion, D.
    Esteve, D.
    Blais, A.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [3] Probe Absorption Properties of a Superconducting Qubit Coupled to Microwave Cavity and Mechanical Resonator
    Yu Fu
    Xiao Tian
    He Gaoqian
    Liao Qinghong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (03)
  • [4] Resonator-based superconducting qubit
    Zhilyaev I.N.
    Russian Microelectronics, 2005, 34 (6) : 407 - 409
  • [5] High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator
    Lupascu, A
    Driessen, EFC
    Roschier, L
    Harmans, CJPM
    Mooij, JE
    PHYSICAL REVIEW LETTERS, 2006, 96 (12)
  • [6] Integrated superconducting circuit for qubit and resonator protection
    Yang, Xiao-Pei
    Han, Zhi-Kun
    Song, Shu-Qing
    Zheng, Wen
    Lan, Dong
    Tan, Xin-Sheng
    Yu, Yang
    CHINESE PHYSICS B, 2021, 30 (07)
  • [7] Integrated superconducting circuit for qubit and resonator protection
    杨晓沛
    韩志坤
    宋树清
    郑文
    兰栋
    谭新生
    于扬
    Chinese Physics B, 2021, (07) : 691 - 694
  • [8] Doubly nonlinear superconducting qubit
    Dat Thanh Le
    Grimsmo, Arne
    Mueller, Clemens
    Stace, T. M.
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [9] Superconducting transmon qubit-resonator quantum battery
    Dou, Fu-Quan
    Yang, Fang-Mei
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [10] Superconducting flux qubit capacitively coupled to an LC resonator
    Yamamoto, T.
    Inomata, K.
    Koshino, K.
    Billangeon, P-M
    Nakamura, Y.
    Tsai, J. S.
    NEW JOURNAL OF PHYSICS, 2014, 16