Bayesian analysis of covariance matrices and dynamic models for longitudinal data

被引:112
|
作者
Daniels, MJ [1 ]
Pourahmadi, M
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
基金
美国国家卫生研究院;
关键词
antedependence and autoregressive models; Bayes estimate; hierarchical model; Markov chain Monte Carlo; mixed model; shrinkage estimator; time series model; unconstrained parameterisation; Wishart distribution;
D O I
10.1093/biomet/89.3.553
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parsimonious modelling of the within-subject covariance structure while heeding its positive-definiteness is of great importance in the analysis of longitudinal data. Using the Cholesky decomposition and the ensuing unconstrained and statistically meaningful reparameterisation, we provide a convenient and intuitive framework for developing conditionally conjugate prior distributions for covariance matrices and show their connections with generalised inverse Wishart priors. Our priors offer many advantages with regard to elicitation, positive definiteness, computations using Gibbs sampling, shrinking covariances toward a particular structure with considerable flexibility, and modelling covariances using covariates. Bayesian estimation methods are developed and the results are compared using two simulation studies. These simulations suggest simpler and more suitable priors for the covariance structure of longitudinal data.
引用
收藏
页码:553 / 566
页数:14
相关论文
共 50 条
  • [1] Bayesian analysis of joint mean and covariance models for longitudinal data
    Xu, Dengke
    Zhang, Zhongzhan
    Wu, Liucang
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (11) : 2504 - 2514
  • [2] Analysis of longitudinal data by combining multiple dynamic covariance models
    Xu, Lin
    Tang, Man-Lai
    Chen, Ziqi
    [J]. STATISTICS AND ITS INTERFACE, 2019, 12 (03) : 479 - 487
  • [3] Bayesian dynamic probit models for the analysis of longitudinal data
    Soyer, Refik
    Sung, Minje
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 388 - 398
  • [4] Bayesian semi-parametric modeling of covariance matrices for multivariate longitudinal data
    Papageorgiou, Georgios
    [J]. STATISTICS IN MEDICINE, 2022, 41 (14) : 2665 - 2687
  • [5] Bayesian Inference of Dynamic Mediation Models for Longitudinal Data
    Zhao, Saijun
    Zhang, Zhiyong
    Zhang, Hong
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2024, 31 (01) : 14 - 26
  • [6] Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices
    Lan, Shiwei
    Holbrook, Andrew
    Elias, Gabriel A.
    Fortin, Norbert J.
    Ombao, Hernando
    Shahbaba, Babak
    [J]. BAYESIAN ANALYSIS, 2020, 15 (04): : 1199 - 1228
  • [7] Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation
    de Los Campos, Gustavo
    Gianola, Daniel
    [J]. GENETICS SELECTION EVOLUTION, 2007, 39 (05) : 481 - 494
  • [8] Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation
    Gustavo de los Campos
    Daniel Gianola
    [J]. Genetics Selection Evolution, 39 (5)
  • [9] Nonparametric estimation of large covariance matrices of longitudinal data
    Wu, WB
    Pourahmadi, M
    [J]. BIOMETRIKA, 2003, 90 (04) : 831 - 844
  • [10] Bayesian Estimation of Correlation Matrices of Longitudinal Data
    Ghosh, Riddhi Pratim
    Mallick, Bani
    Pourahmadi, Mohsen
    [J]. BAYESIAN ANALYSIS, 2021, 16 (03): : 1039 - 1058