Permission Extraction Framework for Android Malware Detection

被引:0
|
作者
Ghasempour, Ali [1 ]
Sani, Nor Fazlida Mohd [1 ]
Abari, Ovye John [1 ]
机构
[1] Univ Putra Malaysia, Dept Comp Sci, Upm Serdang 43400, Selangor, Malaysia
关键词
Malware detection; android device; operating system; malicious application; machine learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, Android-based devices are more utilized than other Operating Systems based devices. Statistics show that the market share for android on mobile devices in March 2018 is 84.8 percent as compared with only 15.1 percent iOS. These numbers indicate that most of the attacks are subjected to Android devices. In addition, most people are keeping their confidential information on their mobile phones, and hence there is a need to secure this operating system against harmful attacks. Detecting malicious applications in the Android market is becoming a very complex procedure. This is because as the attacks are increasing, the complexity of feature selection and classification techniques are growing. There are a lot of solutions on how to detect malicious applications on the Android platform but these solutions are inefficient to handle the features extraction and classification due to many false alarms. In this work, the researchers proposed a multi-level permission extraction framework for malware detection in an Android device. The framework uses a permission extraction approach to label malicious applications by analyzing permissions and it is capable of handling a large number of applications while keeping the performance metrics optimized. A static analysis method was employed in this work. Support Vector Machine (SVM) and Decision Tree Algorithm was used for the classification. The results show that while increasing input data, the model tries to keep detection accuracy at an acceptable level.
引用
收藏
页码:463 / 475
页数:13
相关论文
共 50 条
  • [1] Permission Extraction Framework for Android Malware Detection
    Ghasempour A.
    Sani N.F.M.
    Abari O.J.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (11): : 463 - 475
  • [2] Multilevel Permission Extraction in Android Applications for Malware Detection
    Wang, Zhen
    Li, Kai
    Hu, Yan
    Fukuda, Akira
    Kong, Weiqiang
    PROCEEDING OF THE 2019 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (IEEE CITS 2019), 2019, : 221 - 225
  • [3] Permission Weighting Approaches in Permission Based Android Malware Detection
    Kural, Oguz Emre
    Sahin, Durmus Ozkan
    Akleylek, Sedat
    Kilic, Erdal
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 134 - 139
  • [4] Permission based detection system for android malware
    Utku A.
    Doǧru I.A.
    Utku, Anil (anilutku@gazi.edu.tr), 1600, Gazi Universitesi (32): : 1015 - 1024
  • [5] Android Malware Detection Using Permission Analysis
    Shahriar, Hossain
    Islam, Mahbubul
    Clincy, Victor
    SOUTHEASTCON 2017, 2017,
  • [6] Permission based detection system for android malware
    Utku, Anil
    Dogru, Ibrahim Alper
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2017, 32 (04): : 1015 - 1024
  • [7] Permission based malware detection in android devices
    Ilham, Soussi
    Abderrahim, Ghadi
    Abdelhakim, Boudhir Anouar
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA'18), 2018,
  • [8] The Evolution of Permission as Feature for Android Malware Detection
    Gaviria de la Puerta, Jose
    Sanz, Borja
    Santos Grueiro, Igor
    Garcia Bringas, Pablo
    INTERNATIONAL JOINT CONFERENCE: CISIS'15 AND ICEUTE'15, 2015, 369 : 389 - 400
  • [9] Android Malware Detection with Contrasting Permission Patterns
    Xiong Ping
    Wang Xiaofeng
    Niu Wenjia
    Zhu Tianqing
    Li Gang
    CHINA COMMUNICATIONS, 2014, 11 (08) : 1 - 14
  • [10] ANDROID MALWARE DETECTION THROUGH PERMISSION AND PACKAGE
    Ju, Xiang-Yu
    2014 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2014, : 61 - 65