New class of multiplicative algorithms for solving of entropy-linear programs

被引:6
|
作者
Popkov, Yu. S. [1 ]
机构
[1] Inst Syst Anal, Moscow 117312, Russia
关键词
entropy maximization; multiplicative algorithms; row-action procedures; active variables; feedback control; G-convergence; exponential Lagrange multipliers;
D O I
10.1016/j.ejor.2005.01.069
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The general entropy-linear program (ELP) is considered. Two types of the new coordinate-wise multiplicative algorithms with p-active variables and feedback control with respect to dual variables and mixed type (dual and primal variables) are proposed for solving the problem. Study of algorithms convergence is based on a stability analysis of the auxiliary differential equations that are continuous analogues of the algorithms. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1368 / 1379
页数:12
相关论文
共 50 条
  • [1] Dual multiplicative algorithms for an entropy-linear programming problem
    E. V. Gasnikova
    Computational Mathematics and Mathematical Physics, 2009, 49 : 439 - 449
  • [2] Dual multiplicative algorithms for an entropy-linear programming problem
    Gasnikova, E. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (03) : 439 - 449
  • [3] The entropy-linear programming: multiplicative methods with p active variables and feedback
    Inst Sistemnogo Analiza RAN, Moscow, Russia
    Avt Telemekh, 5 (145-155):
  • [4] Entropy-linear programming:: Multiplicative methods with p-active variables and feedback
    Popkov, YS
    AUTOMATION AND REMOTE CONTROL, 1999, 60 (05) : 722 - 731
  • [5] Smoothing algorithms for solving linear programs
    Sun, Xiu-Ping
    Zheng, Pi-E
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2008, 41 (07): : 877 - 883
  • [6] Multi-objective optimization based algorithms for solving mixed integer linear minimum multiplicative programs
    Mahmoodian, Vahid
    Charkhgard, Hadi
    Zhang, Yu
    COMPUTERS & OPERATIONS RESEARCH, 2021, 128
  • [7] Solving a Class of Multiplicative Programs with 0–1 Knapsack Constraints
    T. Kuno
    Journal of Optimization Theory and Applications, 1999, 103 : 121 - 135
  • [8] A NEW CLASS OF PARALLEL ALGORITHMS FOR SOLVING SYSTEMS OF LINEAR-EQUATIONS
    JAINANDUNSING, K
    DEPRETTERE, EF
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05): : 880 - 912
  • [9] Efficient numerical methods for entropy-linear programming problems
    A. V. Gasnikov
    E. B. Gasnikova
    Yu. E. Nesterov
    A. V. Chernov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 514 - 524
  • [10] Efficient numerical methods for entropy-linear programming problems
    Gasnikov, A. V.
    Gasnikova, E. B.
    Nesterov, Yu. E.
    Chernov, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 514 - 524