Well-posedness for the generalized Navier-Stokes-Landau-Lifshitz equations

被引:3
|
作者
Liu, Hui [1 ]
Sun, Chengfeng [2 ]
Xin, Jie [3 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
[3] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Navier-Stokes-Landau-Lifshitz equations; Strong solutions; A priori estimates;
D O I
10.1007/s00033-020-01467-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized Navier-Stokes-Landau-Lifshitz equations are considered in this paper. The well-posedness for the multi-dimensional hyperviscous Navier-Stokes-Landau-Lifshitz equations is proved for n >= 3. The existence and uniqueness of the strong solutions for the generalized Navier-Stokes-Landau-Lifshitz equations are proved for 5/4 <= alpha < 5/2 and 5/4 <= and beta < 5/2.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Well-posedness for the generalized Navier–Stokes–Landau–Lifshitz equations
    Hui Liu
    Chengfeng Sun
    Jie Xin
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [2] On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations
    Duan, Ning
    Zhao, Xiaopeng
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6457 - 6463
  • [3] Well-posedness of the generalized Navier–Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    [J]. Applied Mathematics Letters, 2021, 121
  • [4] Well-posedness of the generalized Navier-Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 121
  • [5] Global Smooth Solution to the Incompressible Navier-Stokes-Landau-Lifshitz Equations
    Wang, Guang-wu
    Wang, You-de
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (01): : 135 - 178
  • [6] Global Smooth Solution to the Incompressible Navier-Stokes-Landau-Lifshitz Equations
    Guang-wu WANG
    You-de WANG
    [J]. Acta Mathematicae Applicatae Sinica, 2023, 39 (01) : 135 - 178
  • [7] Global Smooth Solution to the Incompressible Navier-Stokes-Landau-Lifshitz Equations
    Guang-wu Wang
    You-de Wang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 135 - 178
  • [8] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    [J]. ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [9] Existence of strong solutions for the generalized nonhomogeneous Navier-Stokes-Landau-Lifshitz system
    Liu, Hui
    Gao, Hongjun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [10] Global solutions to the Navier-Stokes-Landau-Lifshitz system
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (2-3) : 377 - 388