On two four term arithmetic progressions with equal product

被引:0
|
作者
Bremner, Andrew [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
来源
关键词
LENGTHS;
D O I
10.33039/ami.2020.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate when two four-term arithmetic progressions have an equal product of their terms. This is equivalent to studying the (arithmetic) geometry of a non-singular quartic surface. It turns out that there are many polynomial parametrizations of such progressions, and it is likely that there exist polynomial parametrizations of every positive degree. We find all such parametrizations for degrees 1 to 4, and give examples of parametrizations for degrees 5 to 10.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 50 条
  • [1] ON ARITHMETIC PROGRESSIONS WITH EQUAL PRODUCTS
    SARADHA, N
    SHOREY, TN
    TIJDEMAN, R
    ACTA ARITHMETICA, 1994, 68 (01) : 89 - 100
  • [2] ON ARITHMETIC PROGRESSIONS OF EQUAL LENGTHS WITH EQUAL PRODUCTS
    SARADHA, N
    SHOREY, TN
    TIJDEMAN, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 : 193 - 201
  • [3] Product of primes in arithmetic progressions
    Ramare, Olivier
    Srivastav, Priyamvad
    Serra, Oriol
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 747 - 766
  • [4] On arithmetic progressions of equal lengths and equal products of terms
    Choudhry, A
    ACTA ARITHMETICA, 1997, 82 (01) : 95 - 97
  • [5] SEVERAL ARITHMETIC PROGRESSIONS OF EQUAL LENGTHS AND EQUAL PRODUCTS OF TERMS
    Choudhry, Ajai
    ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (1-2): : 87 - 95
  • [6] Equal sums of powers of the terms of arithmetic progressions of equal lengths
    Choudhry, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 149 - 156
  • [7] ON VALUES OF A POLYNOMIAL AT ARITHMETIC PROGRESSIONS WITH EQUAL PRODUCTS
    SARADHA, N
    SHOREY, TN
    TIJDEMAN, R
    ACTA ARITHMETICA, 1995, 72 (01) : 67 - 76
  • [8] ON EQUAL VALUES OF POWER SUMS OF ARITHMETIC PROGRESSIONS
    Bazso, Andras
    Kreso, Dijana
    Luca, Florian
    Pinter, Akos
    GLASNIK MATEMATICKI, 2012, 47 (02) : 253 - 263
  • [9] SOME ESTIMATES FOR THE AVERAGE OF THE ERROR TERM OF THE MERTENS PRODUCT FOR ARITHMETIC PROGRESSIONS
    Languasco, Alessandro
    Zaccagnini, Alessandro
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 38 (01) : 41 - 47
  • [10] Irreducibility of polynomials and arithmetic progressions with equal products of terms
    Beukers, F
    Shorey, TN
    Tijdeman, R
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 11 - 26