Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a turbulent axisymmetric jet

被引:18
|
作者
Jofre, Lluis [1 ]
Domino, Stefan P. [2 ]
Iaccarino, Gianluca [1 ]
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
[2] Sandia Natl Labs, Computat Thermal & Fluid Mech, Albuquerque, NM 87185 USA
关键词
Large-eddy simulation; Sensitivity analysis; Subgrid-scale modeling; Turbulent axisymmetric jet; Uncertainty quantification; COMMUTATIVE FILTERS; DATA-DRIVEN; MODELS; LES; FLOW; BACKSCATTER; INVARIANCE; ERRORS; FIELD;
D O I
10.1016/j.ijheatfluidflow.2019.04.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
The study of complex turbulent flows by means of large-eddy simulation approaches has become increasingly popular in many scientific and engineering applications. The underlying filtering operation of the approach enables to significantly reduce the spatial and temporal resolution requirements by means of representing only large-scale motions. However, the small-scale stresses and their effects on the resolved flow field are not negligible, and therefore require additional modeling. As a consequence, the assumptions made in the closure formulations become potential sources of model-form uncertainty that can impact the quantities of interest. The objective of this work, thus, is to perform a model-form sensitivity analysis in large-eddy simulations of an axisymmetric turbulent jet following an eigenspace-based strategy recently proposed. The approach relies on introducing perturbations to the decomposed subgrid-scale stress tensor within a range of physically plausible values. These correspond to discrepancy in magnitude (trace), anisotropy (eigenvalues) and orientation (eigenvectors) of the normalized, small-scale stresses with respect to a given tensor state, such that propagation of their effects can be assessed. The generality of the framework with respect to the six degrees of freedom of the small-scale stress tensor makes it also suitable for its application within data-driven techniques for improved subgrid-scale modeling.
引用
下载
收藏
页码:314 / 335
页数:22
相关论文
共 50 条
  • [1] Analysis of subgrid-scale torque for large-eddy simulation of turbulence
    Marshall, JS
    Beninati, AL
    AIAA JOURNAL, 2003, 41 (10) : 1875 - 1881
  • [2] Scale-adaptive subgrid-scale modelling for large-eddy simulation of turbulent flows
    Yu, Changping
    Xiao, Zuoli
    Li, Xinliang
    PHYSICS OF FLUIDS, 2017, 29 (03)
  • [3] Evaluating Subgrid-Scale Models for Large-Eddy Simulation of Turbulent Katabatic Flow
    Burkholder, Bryan A.
    Fedorovich, Evgeni
    Shapiro, Alan
    QUALITY AND RELIABILITY OF LARGE-EDDY SIMULATIONS II, 2011, 16 : 149 - 160
  • [4] Subgrid-scale helicity equation model for large-eddy simulation of turbulent flows
    Qi, Han
    Li, Xinliang
    Yu, Changping
    PHYSICS OF FLUIDS, 2021, 33 (03)
  • [5] Homogeneity of the Subgrid-Scale Turbulent Mixing in Large-Eddy Simulation of Shallow Convection
    Jarecka, Dorota
    Grabowski, Wojciech W.
    Morrison, Hugh
    Pawlowska, Hanna
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2013, 70 (09) : 2751 - 2767
  • [6] Analysis of relaxation regularization as subgrid-scale model for large-eddy simulation
    Mueller, S. B.
    Adams, N. A.
    Kleiser, L.
    DIRECT AND LARGE-EDDY SIMULATION V, PROCEEDINGS, 2004, 9 : 57 - 64
  • [7] Analysis of anisotropic subgrid-scale stress for coarse large-eddy simulation
    Inagaki, Kazuhiro
    Kobayashi, Hiromichi
    PHYSICAL REVIEW FLUIDS, 2023, 8 (10)
  • [8] Assessment of subgrid-scale models for large-eddy simulation of a planar turbulent wall-jet with heat transfer
    Kakka, Priyesh
    Anupindi, Kameswararao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 153
  • [9] Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows
    Silvis, Maurits H.
    Remmerswaal, Ronald A.
    Verstappen, Roel
    PHYSICS OF FLUIDS, 2017, 29 (01)
  • [10] LARGE-EDDY SIMULATION OF TURBULENT OBSTACLE FLOW USING A DYNAMIC SUBGRID-SCALE MODEL
    YANG, KS
    FERZIGER, JH
    AIAA JOURNAL, 1993, 31 (08) : 1406 - 1413