Inner function in Dirichlet type spaces

被引:9
|
作者
Qian, Ruishen [1 ]
Shi, Yecheng [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] Shanwei Vocat & Tech Coll, Dept Math & Applicat, Shanwei 516600, Peoples R China
关键词
D-K spaces; Inner functions; Carleson-Newman sequences; MULTIPLIERS; THEOREMS;
D O I
10.1016/j.jmaa.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be two spaces of analytic functions in the unit disc D with X subset of Y. For an inner function theta, theta is said to be (X, Y)-improving if f theta is an element of X whenever f is an element of X and f theta is an element of Y. In this note, for a certain nonnegative and increasing function K defined in [0; infinity), we consider the space of Dirichlet type D-K consisting of those functions f analytic in D such that integral(D)vertical bar f'(z)vertical bar K-2(1 - vertical bar z vertical bar(2))dA(z) < infinity. We prove that an inner function belongs to D-K if and only if it is (D-K boolean AND BMOA; BMOA)-improving. We discuss also inner functions in D-K as multipliers of D-K boolean AND BMOA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1844 / 1854
页数:11
相关论文
共 50 条
  • [1] Function spaces as Dirichlet spaces
    Jacob, N
    Schilling, RL
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (01): : 3 - 28
  • [2] The Dirichlet Heat Kernel in Inner Uniform Domains in Fractal-Type Spaces
    Lierl, Janna
    [J]. POTENTIAL ANALYSIS, 2022, 57 (04) : 521 - 543
  • [3] The Dirichlet Heat Kernel in Inner Uniform Domains in Fractal-Type Spaces
    Janna Lierl
    [J]. Potential Analysis, 2022, 57 : 521 - 543
  • [4] Qp Spaces and Dirichlet Type Spaces
    Bao, Guanlong
    Gogus, Nihat Gokhan
    Pouliasis, Stamatis
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (04): : 690 - 704
  • [5] Multipliers on Dirichlet type spaces
    Jupiter, Daniel
    Redett, David
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2006, 72 (1-2): : 179 - 203
  • [6] Multipliers on Dirichlet type spaces
    Hu, PY
    Shi, JH
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (02): : 263 - 272
  • [7] Multipliers on Dirichlet Type Spaces
    Peng Yan HU Department of Mathematics. Normal College of Shenzhen University. Shenzhen. Guangdong 518060. P. R. China Ji Huai SHI Department of Mathematics. University of Science and Technology of China. Hefei. Anhui 230026
    [J]. Acta Mathematica Sinica,English Series, 2001, 17 (02) : 263 - 272
  • [8] On Multipliers of Dirichlet Type Spaces
    Guanlong Bao
    Zengjian Lou
    Ruishen Qian
    Hasi Wulan
    [J]. Complex Analysis and Operator Theory, 2015, 9 : 1701 - 1732
  • [9] Multipliers on Dirichlet Type Spaces
    Hu P.Y.
    Shi J.H.
    [J]. Acta Mathematica Sinica, 2001, 17 (2) : 263 - 272
  • [10] Cyclicity in Dirichlet type spaces
    Kellay, K.
    Le Manach, F.
    Zarrabi, M.
    [J]. COMPLEX ANALYSIS AND SPECTRAL THEORY, 2020, 743 : 181 - 193