Existence and uniqueness theorems for singular anisotropic quasilinear elliptic boundary value problems

被引:2
|
作者
Hill, S [1 ]
Moore, KS
Reichel, W
机构
[1] Rowan Univ, Dept Math, Glassboro, NJ 08028 USA
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
anisotropic singular equations; comparison principles;
D O I
10.1090/S0002-9939-00-05493-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On bounded domains Omega subset of R-2 we consider the anisotropic problems u(-a)u(xx) + u(-b)u(yy) = p(x, y) in Omega with a, b > 1 and u = infinity on partial derivative Omega and u(c)u(xx) + u(d)u(yy) + q(x, y) = 0 in Omega with c, d greater than or equal to 0 and u = 0 on partial derivative Omega. Moreover, we generalize these boundary value problems to space-dimensions n > 2. Under geometric conditions on Omega and monotonicity assumption on 0 < p, q is an element of C-alpha(<(Omega)over bar>) we prove existence and uniqueness of positive solutions.
引用
收藏
页码:1673 / 1683
页数:11
相关论文
共 50 条