Raman spectroscopic histology using machine learning for nonalcoholic fatty liver disease

被引:16
|
作者
Helal, Khalifa Mohammad [1 ,2 ]
Taylor, James Nicholas [3 ]
Cahyadi, Harsono [4 ]
Okajima, Akira [5 ]
Tabata, Koji [3 ]
Itoh, Yoshito [5 ]
Tanaka, Hideo [4 ]
Fujita, Katsumasa [6 ,7 ,8 ]
Harada, Yoshinori [4 ]
Komatsuzaki, Tamiki [1 ,3 ,9 ,10 ]
机构
[1] Hokkaido Univ, Grad Sch Life Sci, Sapporo, Hokkaido, Japan
[2] Comilla Univ, Dept Math, Cumilla, Bangladesh
[3] Hokkaido Univ, Inst Elect Sci, Res Ctr Math Social Creat, Sapporo, Hokkaido, Japan
[4] Kyoto Prefectural Univ Med, Dept Pathol & Cell Regulat, Kyoto, Japan
[5] Kyoto Prefectural Univ Med, Dept Gastroenterol & Hepatol, Kyoto, Japan
[6] Osaka Univ, Dept Appl Phys, Suita, Osaka, Japan
[7] Osaka Univ, Inst Open & Transdisciplinary Res Initiat, Transdimens Life Imaging Div, Suita, Osaka, Japan
[8] Osaka Univ, Natl Inst Adv Ind Sci & Technol, Adv Photon & Biosensing Open Innovat Lab, Suita, Osaka, Japan
[9] Hokkaido Univ, Inst Chem React Design & Discovery, Sapporo, Hokkaido, Japan
[10] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, Dijon, France
关键词
machine learning; nonalcoholic fatty liver disease; Raman hyperspectral imaging; rate-distortion theory; superpixel segmentation; STEATOHEPATITIS; CLASSIFICATION; VARIABILITY; VALIDATION;
D O I
10.1002/1873-3468.13520
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histopathology requires the expertise of specialists to diagnose morphological features of cells and tissues. Raman imaging can provide additional biochemical information to benefit histological disease diagnosis. Using a dietary model of nonalcoholic fatty liver disease in rats, we combine Raman imaging with machine learning and information theory to evaluate cellular-level information in liver tissue samples. After increasing signal-to-noise ratio in the Raman images through superpixel segmentation, we extract biochemically distinct regions within liver tissues, allowing for quantification of characteristic biochemical components such as vitamin A and lipids. Armed with microscopic information about the biochemical composition of the liver tissues, we group tissues having similar composition, providing a descriptor enabling inference of tissue states, contributing valuable information to histological inspection.
引用
收藏
页码:2535 / 2544
页数:10
相关论文
共 50 条
  • [1] Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children
    Kleiner, David E.
    Makhlouf, Hala R.
    CLINICS IN LIVER DISEASE, 2016, 20 (02) : 293 - +
  • [2] Development and validation of machine learning models for nonalcoholic fatty liver disease
    Peng, Hong-Ye
    Duan, Shao-Jie
    Pan, Liang
    Wang, Mi-Yuan
    Chen, Jia-Liang
    Wang, Yi-Chong
    Yao, Shu-Kun
    HEPATOBILIARY & PANCREATIC DISEASES INTERNATIONAL, 2023, 22 (06) : 615 - 621
  • [3] Development and validation of machine learning models for nonalcoholic fatty liver disease
    Hong-Ye Peng
    Shao-Jie Duan
    Liang Pan
    Mi-Yuan Wang
    Jia-Liang Chen
    Yi-Chong Wang
    Shu-Kun Yao
    Hepatobiliary&PancreaticDiseasesInternational, 2023, 22 (06) : 615 - 621
  • [4] Gallstone Disease Does Not Predict Liver Histology in Nonalcoholic Fatty Liver Disease
    Yilmaz, Yusuf
    Ayyildiz, Talat
    Akin, Hakan
    Colak, Yasar
    Ozturk, Oguzhan
    Senates, Ebubekir
    Tuncer, Ilyas
    Dolar, Enver
    GUT AND LIVER, 2014, 8 (03) : 313 - 317
  • [5] Pediatric nonalcoholic fatty liver disease:Overview with emphasis on histology
    Yoshihisa Takahashi
    Toshio Fukusato
    World Journal of Gastroenterology, 2010, 16 (42) : 5280 - 5285
  • [6] Pediatric nonalcoholic fatty liver disease: Overview with emphasis on histology
    Takahashi, Yoshihisa
    Fukusato, Toshio
    WORLD JOURNAL OF GASTROENTEROLOGY, 2010, 16 (42) : 5280 - 5285
  • [7] Nonalcoholic fatty liver disease - Correlation with histology and viral hepatitis
    Akyol, G
    Erdem, O
    Yilmaz, G
    SAUDI MEDICAL JOURNAL, 2005, 26 (12) : 1904 - 1910
  • [8] Machine learning classifiers for screening nonalcoholic fatty liver disease in general adults
    Qin, Shenghua
    Hou, Xiaomin
    Wen, Yuan
    Wang, Chunqing
    Tan, Xiaxian
    Tian, Hao
    Ao, Qingqing
    Li, Jingze
    Chu, Shuyuan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Machine learning classifiers for screening nonalcoholic fatty liver disease in general adults
    Shenghua Qin
    Xiaomin Hou
    Yuan Wen
    Chunqing Wang
    Xiaxian Tan
    Hao Tian
    Qingqing Ao
    Jingze Li
    Shuyuan Chu
    Scientific Reports, 13
  • [10] Nonalcoholic fatty liver disease and early prediction of gestational diabetes mellitus using machine learning methods
    Lee, Seung Mi
    Hwangbo, Suhyun
    Norwitz, Errol R.
    Koo, Ja Nam
    Oh, Ig Hwan
    Choi, Eun Saem
    Jung, Young Mi
    Kim, Sun Min
    Kim, Byoung Jae
    Kim, Sang Youn
    Kim, Gyoung Min
    Kim, Won
    Joo, Sae Kyung
    Shin, Sue
    Park, Chan-Wook
    Park, Taesung
    Park, Joong Shin
    CLINICAL AND MOLECULAR HEPATOLOGY, 2022, 28 (01) : 105 - 116