On nondeterminism in combinatorial filters

被引:1
|
作者
Zhang, Yulin [1 ]
Shell, Dylan A. [2 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[2] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICRA46639.2022.9812371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of combinatorial filter reduction arises from resource optimization in robots; it is one specific way in which automation can help to achieve minimalism, to build better robots. This paper contributes a new definition of filter minimization that is broader than its antecedents, allowing filters (input, output, or both) to be nondeterministic. This changes the problem considerably. Nondeterministic filters may re-use states to obtain more `behavior' per vertex. We show that the gap in size can be significant (larger than polynomial), suggesting such cases will generally be more challenging than deterministic problems. Indeed, this is supported by the core complexity result established in this paper: producing nondeterministic minimizers is PSPACE-hard. The hardness separation for minimization existing between deterministic filter and automata, thus, fails to hold for the nondeterministic case.
引用
收藏
页码:4378 / 4384
页数:7
相关论文
共 50 条
  • [1] Nondeterminism Subject to Output Commitment in Combinatorial Filters
    Zhang, Yulin
    Shell, Dylan A.
    ALGORITHMIC FOUNDATIONS OF ROBOTICS XV, 2023, 25 : 205 - 222
  • [2] Automatic Reduction of Combinatorial Filters
    O'Kane, Jason M.
    Shell, Dylan A.
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 4082 - 4089
  • [3] COMBINATORIAL REALIZATION OF DIGITAL WAVE FILTERS
    GORSHKOV, AK
    LESNIKOV, VA
    PETROV, EP
    CHASTIKOV, AV
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1981, 35-6 (02) : 83 - 84
  • [4] A combinatorial property of Frechet iterated filters
    Debs, Gabriel
    Saint Raymond, Jean
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (08) : 2205 - 2227
  • [5] MATHIAS FORCING AND COMBINATORIAL COVERING PROPERTIES OF FILTERS
    Chodounsky, David
    Repovs, Dusan
    Zdomskyy, Lyubomyr
    JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (04) : 1398 - 1410
  • [6] Modelling nondeterminism
    Martin, CE
    Curtis, SA
    Rewitzky, I
    MATHEMATICS OF PROGRAM CONSTRUCTION, PROCEEDINGS, 2004, 3125 : 228 - 251
  • [7] The Epistemology of Nondeterminism
    Bjorndahl, Adam
    JOURNAL OF LOGIC LANGUAGE AND INFORMATION, 2022, 31 (04) : 619 - 644
  • [8] The Epistemology of Nondeterminism
    Bjorndahl, Adam
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2018), 2018, 10944 : 145 - 162
  • [9] The Epistemology of Nondeterminism
    Adam Bjorndahl
    Journal of Logic, Language and Information, 2022, 31 (4) : 619 - 644
  • [10] Combinatorial Filters: Sensor Beams, Obstacles, and Possible Paths
    Tovar, Benjamin
    Cohen, Fred
    Bobadilla, Leonardo
    Czarnowski, Justin
    Lavalle, Steven M.
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2014, 10 (03)