The Estimation Performance of Nonlinear Least Squares for Phase Retrieval

被引:8
|
作者
Huang, Meng [1 ,2 ]
Xu, Zhiqiang [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Inst Computat Math, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金;
关键词
Phase retrieval; estimation performance; nonlinear least squares; nonlinear Lasso; CRYSTALLOGRAPHY;
D O I
10.1109/TIT.2020.2983562
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Suppose that y = vertical bar Ax(0)vertical bar + eta where x(0) is an element of R-d is the target signal and eta is an element of R-m is a noise vector. The aim of phase retrieval is to estimate x(0) from y. A popular model for estimating x(0) is the nonlinear least squares (x) over cap := argmin(x) parallel to vertical bar Ax vertical bar - y parallel to 2. One has already developed many efficient algorithms for solving the model, such as the seminal error reduction algorithm. In this paper, we present the estimation performance of the model with proving that parallel to(x)over cap> - x(0)parallel to less than or similar to parallel to eta parallel to 2/root m under the assumption of A being a Gaussian random matrix. We also prove the reconstruction error parallel to eta parallel to(2)/root m is sharp. For the case where x(0) is sparse, we study the estimation performance of both the nonlinear Lasso of phase retrieval and its unconstrained version. Our results are non-asymptotic, and we do not assume any distribution on the noise eta. To the best of our knowledge, our results represent the first theoretical guarantee for the nonlinear least squares and for the nonlinear Lasso of phase retrieval.
引用
收藏
页码:7967 / 7977
页数:11
相关论文
共 50 条
  • [1] Total Least Squares Phase Retrieval
    Gupta, Sidharth
    Dokmanic, Ivan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 536 - 549
  • [2] Nonlinear least-squares estimation
    Pollard, D
    Radchenko, P
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (02) : 548 - 562
  • [3] NONLINEAR LEAST-SQUARES ESTIMATION
    HARTLEY, HO
    BOOKER, A
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02): : 638 - 650
  • [4] On least squares estimation for nonlinear autoregressive processes
    Mangeas, M
    Yao, JF
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (04): : 471 - 474
  • [5] LEAST SQUARES ESTIMATION FOR A CLASS OF NONLINEAR MODELS
    GUTTMAN, I
    PEREYRA, V
    ACTA CIENTIFICA VENEZOLANA, 1971, 22 : 25 - &
  • [6] ESTIMATION OF PARAMETERS FOR NONLINEAR LEAST SQUARES ANALYSIS
    KITTRELL, JR
    MEZAKI, R
    WATSON, CC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1965, 57 (12): : 19 - &
  • [7] Least squares estimation of nonlinear spatial trends
    Crujeiras, Rosa M.
    Van Keilegom, Ingrid
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 452 - 465
  • [8] Exact Phase Retrieval by Least-Squares Optimization
    Yu, Chengpu
    Chen, Jie
    Dou, Lihua
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE RCAR), 2018, : 639 - 644
  • [9] Nonlinear regression models with profile nonlinear least squares estimation
    Zhang, Jun
    Gai, Yujie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2140 - 2157
  • [10] Polynomial Phase Estimation by Least Squares Phase Unwrapping
    McKilliam, Robby G.
    Quinn, Barry G.
    Clarkson, I. Vaughan L.
    Moran, Bill
    Vellambi, Badri N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (08) : 1962 - 1975