Multiobjective Testing Resource Allocation Under Uncertainty

被引:12
|
作者
Pietrantuono, Roberto [1 ]
Potena, Pasqualina [3 ]
Pecchia, Antonio [2 ]
Rodriguez, Daniel [5 ]
Russo, Stefano [4 ]
Fernandez-Sanz, Luis [5 ]
机构
[1] Natl Interuniv Consortium Informat, CINI, I-80126 Naples, Italy
[2] Natl Interuniv Consortium Informat, I-80126 Naples, Italy
[3] RISE SICS Vasteras, SE-72213 Vasteras, Sweden
[4] Federico II Univ Naples, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
[5] Univ Alcala, Dept Comp Sci, Alcala De Henares 28801, Spain
关键词
Optimization; software debugging; software reliability; software testing; software quality; resource management; SOFTWARE-RELIABILITY GROWTH; GENETIC ALGORITHM; OPTIMIZATION; SYSTEMS; MODEL; SELECTION; COST; DESIGN; TIME; BUG;
D O I
10.1109/TEVC.2017.2691060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Testing resource allocation is the problem of planning the assignment of resources to testing activities of software components so as to achieve a target goal under given constraints. Existing methods build on software reliability growth models (SRGMs), aiming at maximizing reliability given time/cost constraints, or at minimizing cost given quality/time constraints. We formulate it as a multiobjective debug-aware and robust optimization problem under uncertainty of data, advancing the state-of-the-art in the following ways. Multiobjective optimization produces a set of solutions, allowing to evaluate alternative tradeoffs among reliability, cost, and release time. Debug awareness relaxes the traditional assumptions of SRGMs-in particular the very unrealistic immediate repair of detected faults-and incorporates the bug assignment activity. Robustness provides solutions valid in spite of a degree of uncertainty on input parameters. We show results with a real-world case study.
引用
收藏
页码:347 / 362
页数:16
相关论文
共 50 条
  • [1] RESOURCE ALLOCATION UNDER UNCERTAINTY
    TRINKL, FH
    [J]. POLICY SCIENCES, 1975, 6 (01) : 29 - 40
  • [2] RESOURCE ALLOCATION UNDER UNCERTAINTY
    STIGUM, BP
    [J]. ECONOMETRICA, 1970, 38 (04) : 130 - &
  • [3] RESOURCE-ALLOCATION UNDER UNCERTAINTY
    DRANEV, YN
    [J]. AUTOMATION AND REMOTE CONTROL, 1984, 45 (07) : 899 - 904
  • [4] DISTRIBUTED LEARNING FOR RESOURCE ALLOCATION UNDER UNCERTAINTY
    Mertikopoulos, Panayotis
    Belmega, E. Veronica
    Sanguinetti, Luca
    [J]. 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 535 - 539
  • [5] RESOURCE ALLOCATION UNDER UNCERTAINTY AND DEMAND INTERDEPENDENCE
    REISMAN, A
    ROSENSTE.AB
    BUFFA, ES
    [J]. JOURNAL OF INDUSTRIAL ENGINEERING, 1966, 17 (08): : 402 - &
  • [6] Online Resource Allocation under Horizon Uncertainty
    Balseiro, Santiago
    Kroer, Christian
    Kumar, Rachitesh
    [J]. Performance Evaluation Review, 2023, 51 (01): : 63 - 64
  • [7] Coordinated aviation network resource allocation under uncertainty
    Churchill, Andrew M.
    Lovell, David J.
    [J]. PAPERS SELECTED FOR THE 19TH INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY, 2011, 17 : 572 - 590
  • [8] Resource Allocation Under Demand Uncertainty and Private Information
    Belloni, Alexandre
    Lopomo, Giuseppe
    Wang, Shouqiang
    [J]. MANAGEMENT SCIENCE, 2017, 63 (12) : 4219 - 4235
  • [9] Multi-stage resource allocation under uncertainty
    Calafiore, G
    Nilim, A
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 417 - 423
  • [10] COMPETITIVE RESOURCE ALLOCATION OVER TIME UNDER UNCERTAINTY
    STIGUM, BP
    [J]. ECONOMETRICA, 1971, 39 (04) : 61 - &