An Approach of Transferring Pre-trained Deep Convolutional Neural Networks for Aerial Scene Classification

被引:1
|
作者
Devi, Nilakshi [1 ]
Borah, Bhogeswar [1 ]
机构
[1] Tezpur Univ, Dept CSE, Tezpur 784028, Assam, India
关键词
Convolutional neural network; Feature extraction; Transfer learning; FEATURES;
D O I
10.1007/978-3-030-34869-4_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection or feature extraction plays a vital role in image classification task. Since the advent of deep learning methods, significant efforts have been given by researchers to obtain an optimal feature set of images for improving classification performance. Though several deep architectures of Convolutional Neural Networks (CNNs) have been successfully designed but training such deep architectures with small datasets like aerial scenes often leads to overfitting hence affects the classification accuracy. To tackle this issue in past few works, pre-trained CNNs are adopted as feature extractor where features are directly transferred to train only the classification layer for classifying images on the target dataset. In this work, an approach of feature extraction is proposed where both "multi-layer" and "multi-model" features are extracted from pre-trained CNNs. "Multi-layer" features are concatenation of features from multiple layers within a same CNN and "Multi-model" are concatenation of features from different CNN models. The concatenated features are further reduced with some method to obtain an optimal feature set.
引用
收藏
页码:551 / 558
页数:8
相关论文
共 50 条
  • [1] Pre-trained Convolutional Neural Networks for the Lung Sounds Classification
    Vaityshyn, Valentyn
    Porieva, Hanna
    Makarenkova, Anastasiia
    [J]. 2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 522 - 525
  • [2] Transfer learning with pre-trained deep convolutional neural networks for serous cell classification
    Baykal, Elif
    Dogan, Hulya
    Ercin, Mustafa Emre
    Ersoz, Safak
    Ekinci, Murat
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15593 - 15611
  • [3] Transfer learning with pre-trained deep convolutional neural networks for serous cell classification
    Elif Baykal
    Hulya Dogan
    Mustafa Emre Ercin
    Safak Ersoz
    Murat Ekinci
    [J]. Multimedia Tools and Applications, 2020, 79 : 15593 - 15611
  • [4] CLASSIFICATION OF NOISE BETWEEN FLOORS IN A BUILDING USING PRE-TRAINED DEEP CONVOLUTIONAL NEURAL NETWORKS
    Choi, Hwiyong
    Lee, Seungjun
    Yang, Haesang
    Seong, Woojae
    [J]. 2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2018, : 535 - 539
  • [5] Classification of Deepfake Videos Using Pre-trained Convolutional Neural Networks
    Masood, MomMa
    Nawaz, Marriam
    Javed, Ali
    Nazir, Tahira
    Mehmood, Awais
    Mahum, Rabbia
    [J]. 2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [6] ConvTimeNet: A Pre-trained Deep Convolutional Neural Network for Time Series Classification
    Kashiparekh, Kathan
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [7] Object detection and classification of butterflies using efficient CNN and pre-trained deep convolutional neural networks
    R. Faerie Mattins
    M. Vergin Raja Sarobin
    Azrina Abd Aziz
    S. Srivarshan
    [J]. Multimedia Tools and Applications, 2024, 83 : 48457 - 48482
  • [8] Object detection and classification of butterflies using efficient CNN and pre-trained deep convolutional neural networks
    Mattins, R. Faerie
    Sarobin, M. Vergin Raja
    Aziz, Azrina Abd
    Srivarshan, S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 48457 - 48482
  • [9] Aerial Scene Classification with Convolutional Neural Networks
    Jia, Sibo
    Liu, Huaping
    Sun, Fuchun
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2015, 2015, 9377 : 258 - 265
  • [10] Medical Image Classification: A Comparison of Deep Pre-trained Neural Networks
    Alebiosu, David Olayemi
    Muhammad, Fermi Pasha
    [J]. 2019 17TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2019, : 306 - 310