On the repartition of powers modulo 1

被引:4
|
作者
Kahane, Jean-Pierre
机构
关键词
D O I
10.1016/j.crma.2013.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For almost all x > 1, (x(n)) (n = 1, 2,...) is equidistributed modulo 1, a classical result. What can be said on the exceptional set? It has Hausdorff dimension one. Much more: given an (b(n)) in [0, 1] and epsilon > 0, the x-set such that vertical bar x(n) - b(n)vertical bar < epsilon modulo 1 for n large enough has dimension 1. However, its intersection with an interval [1, X] has a dimension < 1, depending on epsilon and X. Some results are given and a question is proposed. (C) 2013 Publie par Elsevier Masson SAS pour l'Academie des sciences.
引用
收藏
页码:383 / 385
页数:3
相关论文
共 50 条
  • [1] Powers of Two Modulo Powers of Three
    Coons, Michael
    Winning, Heath
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (06)
  • [2] On the distribution modulo 1 of the sum of powers of a Salem number
    Stankov, Dragan
    [J]. COMPTES RENDUS MATHEMATIQUE, 2016, 354 (06) : 569 - 576
  • [3] SUR LA REPARTITION MODULO 1 DES MULTIPLES DUN NOMBRE REEL
    GILLET, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1967, 264 (05): : 223 - &
  • [4] Composition Modulo Powers of Polynomials
    van der Hoeven, Joris
    Lecerf, Gregoire
    [J]. PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 445 - 452
  • [5] The distribution of powers modulo q
    Qi, Jinyun
    Xu, Zhefeng
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 387 - 408
  • [6] Powers of Rational Numbers Modulo 1 Lying in Short Intervals
    Artūras Dubickas
    [J]. Results in Mathematics, 2010, 57 : 23 - 31
  • [7] Congruences modulo prime powers of Hecke eigenvalues in level 1
    Rustom, Nadim
    [J]. RESEARCH IN NUMBER THEORY, 2019, 5 (01)
  • [8] Powers of rationals modulo 1 and rational base number systems
    Akiyama, Shigeki
    Frougny, Christiane
    Sakarovitch, Jacques
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) : 53 - 91
  • [9] Powers of rationals modulo 1 and rational base number systems
    Shigeki Akiyama
    Christiane Frougny
    Jacques Sakarovitch
    [J]. Israel Journal of Mathematics, 2008, 168
  • [10] Powers of Rational Numbers Modulo 1 Lying in Short Intervals
    Dubickas, Arturas
    [J]. RESULTS IN MATHEMATICS, 2010, 57 (1-2) : 23 - 31