A reduced fast ion transport model for the tokamak transport code TRANSP

被引:78
|
作者
Podesta, M. [1 ]
Gorelenkova, M. [1 ]
White, R. B. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
基金
美国能源部;
关键词
fast ion transport; tokamak simulations; Alfvenic instabilities; reduced transport modules; SIMULATION; PLASMAS; PHYSICS;
D O I
10.1088/0741-3335/56/5/055003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast ion transport models currently implemented in the tokamak transport code TRANSP (Hawryluk 1980 Physics of Plasmas Close to Thermonuclear Conditions (Brussels: CEC)) are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as toroidal Alfven eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the Monte Carlo approach used in TRANSP. The proposed model is based on the analysis of the fast ion response to TAE modes through the ORBIT code (White and Chance 1984 Phys. Fluids 27 2455), but it can be generalized to higher frequency modes (e. g. compressional and global Alfven eigenmodes) and to other numerical codes or theories.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Computation of Alfven eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code
    Podesta, M.
    Gorelenkova, M.
    Gorelenkov, N. N.
    White, R. B.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (09)
  • [2] Extension of the energetic particle transport kick model in TRANSP to multiple fast ion species
    Podesta, M.
    Gorelenkova, M.
    Teplukhina, A. A.
    Bonofiglo, P. J.
    Dumont, R.
    Keeling, D.
    Poli, F. M.
    White, R. B.
    [J]. NUCLEAR FUSION, 2022, 62 (12)
  • [3] Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code
    Geiger, B.
    Karpushov, A. N.
    Duval, B. P.
    Marini, C.
    Sauter, O.
    Andrebe, Y.
    Testa, D.
    Marascheck, M.
    Salewski, M.
    Schneider, P. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (11)
  • [4] The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
    Pankin, A
    McCune, D
    Andre, R
    Bateman, G
    Kritz, A
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2004, 159 (03) : 157 - 184
  • [5] FAST-ION TRANSPORT IN A TOKAMAK WITH A BUNDLE DIVERTOR
    MUDFORD, BS
    JOHNSON, PC
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1985, 27 (12B) : 1461 - 1477
  • [6] Quantitative modeling of neoclassical tearing mode driven fast ion transport in integrated TRANSP simulations
    Bardoczi, L.
    Podesta, M.
    Heidbrink, W. W.
    Van Zeeland, M. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (05)
  • [7] Theory of ion transport in the tokamak SOL
    Helander, P
    Hazeltine, RD
    Catto, PJ
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1997, 241 : 363 - 368
  • [8] Fast-ion transport induced by Alfven eigenmodes in the ASDEX Upgrade tokamak
    Garcia-Munoz, M.
    Classen, I. G. J.
    Geiger, B.
    Heidbrink, W. W.
    Van Zeeland, M. A.
    Akaslompolo, S.
    Bilato, R.
    Bobkov, V.
    Brambilla, M.
    Conway, G. D.
    da Graca, S.
    Igochine, V.
    Lauber, Ph.
    Luhmann, N.
    Maraschek, M.
    Meo, F.
    Park, H.
    Schneller, M.
    Tardini, G.
    [J]. NUCLEAR FUSION, 2011, 51 (10)
  • [9] Reduced transport models for a tokamak flight simulator
    Muraca, M.
    Fable, E.
    Angioni, C.
    Luda, T.
    David, P.
    Zohm, H.
    Di Siena, A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (03)
  • [10] Reduced models for ETG transport in the tokamak pedestal
    Hatch, D. R.
    Michoski, C.
    Kuang, D.
    Chapman-Oplopoiou, B.
    Curie, M.
    Halfmoon, M.
    Hassan, E.
    Kotschenreuther, M.
    Mahajan, S. M.
    Merlo, G.
    Pueschel, M. J.
    Walker, J.
    Stephens, C. D.
    [J]. PHYSICS OF PLASMAS, 2022, 29 (06)