One-dimensional diffusion in an asymmetric random environment

被引:6
|
作者
Cheliotis, Dimitrios [1 ]
机构
[1] Bahen Ctr Informat Technol, Dept Math, Toronto, ON M5S 3G3, Canada
基金
美国国家科学基金会;
关键词
diffusion; random environment; renewal theorem; stable process;
D O I
10.1016/j.anihpb.2005.08.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
According to a theorem of S. Schumacher, for a diffusion X in an environment determined by a stable process that belongs to an appropriate class and has index a, it holds that X-t/(log t)(a) converges in distribution as t -> infinity to a random variable having an explicit description in terms of the environment. We compute the density of this random variable in the case the stable process is spectrally one-sided. This computation extends a result of H. Kesten and quantifies the bias that the asymmetry of the environment causes to the behavior of the diffusion. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:715 / 726
页数:12
相关论文
共 50 条
  • [1] ASYMMETRIC RANDOM DIFFUSION ON A ONE-DIMENSIONAL LATTICE
    BERNASCONI, J
    SCHNEIDER, WR
    [J]. HELVETICA PHYSICA ACTA, 1982, 55 (05): : 618 - 618
  • [2] DIFFUSION ON A ONE-DIMENSIONAL LATTICE WITH RANDOM ASYMMETRIC TRANSITION RATES
    BERNASCONI, J
    SCHNEIDER, WR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L729 - L734
  • [3] LOCALIZATION OF DIFFUSION-PROCESSES IN ONE-DIMENSIONAL RANDOM ENVIRONMENT
    KAWAZU, K
    TAMURA, Y
    TANAKA, H
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1992, 44 (03) : 515 - 550
  • [4] Asymmetric one-dimensional random walks
    Antczak, Grazyna
    Ehrlich, Gert
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (12):
  • [5] DIFFUSION IN RANDOM ONE-DIMENSIONAL SYSTEMS
    BERNASCONI, J
    SCHNEIDER, WR
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) : 355 - 362
  • [6] VELOCITY AND DIFFUSION-COEFFICIENT OF A RANDOM ASYMMETRIC ONE-DIMENSIONAL HOPPING MODEL
    ASLANGUL, C
    POTTIER, N
    SAINTJAMES, D
    [J]. JOURNAL DE PHYSIQUE, 1989, 50 (08): : 899 - 921
  • [7] The one-dimensional asymmetric persistent random walk
    Rossetto, Vincent
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [8] HOPPING DIFFUSION IN A ONE-DIMENSIONAL RANDOM SYSTEM
    IGARASHI, A
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (03): : 1031 - 1034
  • [9] ONE-DIMENSIONAL DIFFUSION WITH STOCHASTIC RANDOM BARRIERS
    TERAOKA, I
    KARASZ, FE
    [J]. PHYSICAL REVIEW A, 1992, 45 (08): : 5426 - 5446
  • [10] SCAVENGING OF ONE-DIMENSIONAL DIFFUSION WITH RANDOM TRAPS
    GLASSER, ML
    AGMON, N
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (09): : 5104 - 5109