First principles study of Si-doped BC2N nanotubes

被引:21
|
作者
Rupp, C. J. [1 ]
Rossato, J. [1 ]
Baierle, R. J. [1 ]
机构
[1] Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 130卷 / 11期
关键词
ab initio calculations; boron compounds; carbon compounds; chemical potential; conduction bands; density functional theory; energy gap; impurities; semiconductor materials; semiconductor nanotubes; valence bands; B-C-N; RAY PHOTOELECTRON-SPECTROSCOPY; SINGLE-WALLED NANOTUBES; BORON-NITRIDE; AB-INITIO; ELECTRONIC-STRUCTURE; CARBON NANOTUBES; DEFECTS; GROWTH; ADSORPTION;
D O I
10.1063/1.3089357
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spin polarized density functional theory is used to investigate the incorporation of substitutional Si atoms in the zigzag (5,0) and in the armchair (3,3) BC2N nanotubes (NTs). Our results show that the Si impurities in BC2N NTs have lower formation energy when compared to Si in carbon and boron nitride NTs. In neutral charge state, Si in the boron site (Si-B) presents a spin split with two electronic levels within the NT band gap and it gives rise to a net spin magnetic moment net of 1 mu(B). Si in the nitrogen site (Si-N) introduces electronic levels near the top of the valence band that lead the system to exhibit acceptor properties, which suggest the formation of defect-induced type-p BC2N NTs. The defective levels for Si in the two nonequivalent carbon atom sites (Si-CI and Si-CII) are resonant with the valence and conduction bands, respectively. The calculations of formation energy in charge state show that for all the available values of the electronic chemical potential, Si-CI and Si-CII have lower formation energy in neutral charge state, while Si-B and Si-N present lower formation energy in neutral or single negative charge state depending on the position of the electronic chemical potential.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] First principles of Si-doped BC2N single layer for hydrogen evolution reaction (HER)
    Rupp, Caroline J.
    Anversa, Jonas
    Baierle, Rogerio J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (20) : 7294 - 7304
  • [2] First-principles study of oxidized BC2N nanotubes
    Rupp, Caroline Jaskulski
    Rossato, Jussane
    Baierle, Rogerio Jose
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (20) : 3312 - 3319
  • [3] First-principles study of the adsorption of atomic and molecular hydrogen on BC2N nanotubes
    Rossato, J.
    Baierle, R. J.
    Schmidt, T. M.
    Fazzio, A.
    [J]. PHYSICAL REVIEW B, 2008, 77 (03):
  • [4] Hydrogen fluoride on the pristine, Al and Si doped BC2N nanotubes: A computational study
    Peyghan, Ali Ahmadi
    Noei, Maziar
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 82 : 197 - 201
  • [5] First-principles study of wurtzite BC2N
    Luo, Xiaoguang
    Guo, Xiaoju
    Liu, Zhongyuan
    He, Julong
    Yu, Dongli
    Xu, Bo
    Tian, Yongjun
    Wang, Hui-Tian
    [J]. PHYSICAL REVIEW B, 2007, 76 (09)
  • [6] A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube
    Nematollahi, Parisa
    Neyts, Erik C.
    [J]. APPLIED SURFACE SCIENCE, 2018, 439 : 934 - 945
  • [7] Cubic phases of BC2N:: A first-principles study
    Kim, Eunja
    Pang, Tao
    Utsumi, Wataru
    Solozhenko, Vladimir L.
    Zhao, Yusheng
    [J]. PHYSICAL REVIEW B, 2007, 75 (18):
  • [8] The electronic response of pristine, Al and Si doped BC2N nanotubes to a cathinone molecule: Computational study
    Nejati, Kamellia
    Vessally, Esmail
    Nezhad, Parvaneh Delir Kheirollahi
    Mofid, Hadi
    Bekhradnia, Ahmadreza
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 111 : 238 - 244
  • [9] First principles study of native defects in a graphitic BC2N monolayer
    Barbosa, R. C.
    Guimaraes, P. S.
    Baierle, R. J.
    [J]. THIN SOLID FILMS, 2010, 518 (15) : 4356 - 4362
  • [10] The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study
    Yue Wang
    Juan Zhang
    Gang Huang
    Xinhua Yao
    Qingyi Shao
    [J]. Journal of Molecular Modeling, 2014, 20