Knot homology and sheaves on the Hilbert scheme of points on the plane

被引:15
|
作者
Oblomkov, Alexei [1 ]
Rozansky, Lev [2 ]
机构
[1] Univ Massachusetts Amherst, Dept Math & Stat, Lederle Grad Res Tower,710 N Pleasant St, Amherst, MA 01003 USA
[2] Univ North Carolina Chapel Hill, Dept Math, CB 3250,Phillips Hall, Chapel Hill, NC 27599 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 03期
关键词
MATRIX FACTORIZATIONS; REPRESENTATIONS; LINK; ALGEBRA;
D O I
10.1007/s00029-017-0385-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each braid beta is an element of Br-n we construct a 2-periodic complex S-beta of quasicoherent C* x C*-equivariant sheaves on the non-commutative nested Hilbert scheme Hilb(1,n)(free) . We show that the triply graded vector space of the hypercohomology H(S-beta circle times boolean AND center dot(B)) with B being tautological vector bundle, is an isotopy invariant of the knot obtained by the closure of beta. We also show that the support of cohomology of the complex S-beta is supported on the ordinary nested Hilbert scheme Hilb(1,n). Hilb(1,n)(free) , that allows us to relate the triply graded knot homology to the sheaves on Hilb(1,n).
引用
收藏
页码:2351 / 2454
页数:104
相关论文
共 50 条