Dislocated projective synchronization between fractional-order chaotic systems and integer-order chaotic systems

被引:6
|
作者
Zhang, Xiao-Qing [1 ]
Xiao, Jian [1 ]
Zhang, Qing [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
来源
OPTIK | 2017年 / 130卷
关键词
Integer-order chaotic system; Fractional-order chaotic system; Dislocated projective synchronization; the small-gain theorem; LU SYSTEM;
D O I
10.1016/j.ijleo.2016.11.118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper focuses on the dislocated projective synchronization (DPS) between the fractional-order and the integer-order chaotic systems. Based on the small-gain theorem, nonlinear controllers are designed to reach the DPS between the fractional-order and the integer-order chaotic systems. Numerical simulation illustrates the availability of the proposed scheme. (C) 2016 Elsevier GmbH. All rights reserved.
引用
下载
收藏
页码:1139 / 1150
页数:12
相关论文
共 50 条
  • [1] Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    Zhou Ping
    Cao Yu-Xia
    CHINESE PHYSICS B, 2010, 19 (10)
  • [2] Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    周平
    曹玉霞
    Chinese Physics B, 2010, 19 (10) : 167 - 170
  • [3] Dual projective synchronization between integer-order and fractional-order chaotic systems
    Zhang, Qing
    Xiao, Jian
    Zhang, Xiao-Qing
    Cao, Duan-Yang
    OPTIK, 2017, 141 : 90 - 98
  • [4] Passive Synchronization Control for Integer-order Chaotic Systems and Fractional-order Chaotic Systems
    Shao Keyong
    Bu Ruixuan
    Gao Wang
    Wang Qiutong
    Zhang Yi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1115 - 1119
  • [5] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [6] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, 19 (09) : 237 - 242
  • [7] Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control
    Chen, Diyi
    Zhang, Runfan
    Sprott, J. C.
    Chen, Haitao
    Ma, Xiaoyi
    CHAOS, 2012, 22 (02)
  • [8] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Xiaoyan Yang
    Heng Liu
    Shenggang Li
    Advances in Difference Equations, 2017
  • [9] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Yang, Xiaoyan
    Liu, Heng
    Li, Shenggang
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [10] Adaptive modified generalized function projection synchronization between integer-order and fractional-order chaotic systems
    Guan, Junbiao
    OPTIK, 2016, 127 (10): : 4211 - 4216