Multidimensional inverse-scattering and Clifford analysis

被引:1
|
作者
Bernstein, S [1 ]
机构
[1] Bauhaus Univ Weimar, Inst Math & Phys, D-99421 Weimar, Germany
关键词
inverse scattering transform; Clifford analysis; Schrodinger-type equation; generalized Cauchy formula;
D O I
10.1016/S0893-9659(02)00081-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a higher-dimensional 5 method based on Clifford analysis. To explain the method we consider, the formal solution of the inverse scattering problem for the n-dimensional time-dependent Schrodinger equations given by Nachman and Ablowitz [1]. Replacing the general complex Cauchy formula by a higher-dimensional analogue, we get rid of the "miracle condition". (C) 2002 Elsevier Science Ltd. All rights reserved,
引用
下载
收藏
页码:1035 / 1041
页数:7
相关论文
共 50 条
  • [1] A MULTIDIMENSIONAL INVERSE-SCATTERING METHOD
    NACHMAN, AI
    ABLOWITZ, MJ
    STUDIES IN APPLIED MATHEMATICS, 1984, 71 (03) : 243 - 250
  • [2] Inverse scattering and Clifford analysis
    Bernstein Swanhild
    Advances in Applied Clifford Algebras, 2001, 11 (Suppl 2) : 21 - 30
  • [3] The inverse-scattering problem and global convergence
    Norton, SJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2005, 118 (03): : 1534 - 1539
  • [4] The inverse-scattering problem and global convergence
    Norton, S.J., 1600, Acoustical Society of America (118):
  • [5] Multidimensional inverse-scattering series internal multiple prediction in the coupled plane-wave domain
    Sun, Jian
    Innanen, Kristopher A.
    GEOPHYSICS, 2018, 83 (02) : V73 - V82
  • [6] Inverse-scattering imaging of cavern models
    Lu, Minghui
    Zhang, Cai
    Xu, Jixiang
    Wang, Shoudong
    Wei, Jianxin
    Song, Xuejuan
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2010, 37 (03): : 330 - 337
  • [7] TOWARD RECONSTRUCTING PHASES OF INVERSE-SCATTERING SIGNALS
    BATES, RHT
    TAN, DGH
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (11): : 2013 - 2018
  • [8] REMARK ON THE INVERSE-SCATTERING PROBLEM AT FIXED ENERGY
    REIGNIER, J
    LETTERE AL NUOVO CIMENTO, 1979, 24 (05): : 139 - 143
  • [9] RENORMALIZATION OF AN INVERSE-SCATTERING THEORY FOR INHOMOGENEOUS DIELECTRICS
    LADOUCEUR, HD
    JORDAN, AK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (11): : 1916 - 1921
  • [10] INVERSE-SCATTERING THEORY WITHIN THE RYTOV APPROXIMATION
    DEVANEY, AJ
    OPTICS LETTERS, 1981, 6 (08) : 374 - 376