A Cloud Computing Solution for the Efficient Implementation of the P-SBAS DInSAR Approach

被引:28
|
作者
Zinno, Ivana [1 ]
Casu, Francesco [1 ]
De Luca, Claudio [1 ,2 ]
Elefante, Stefano [3 ]
Lanari, Riccardo [1 ]
Manunta, Michele [1 ]
机构
[1] Consiglio Nazl Ric Natl Res Council, Ist Rilevamento Elettromagnet Ambiente, I-80124 Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol DIETI, I-80138 Naples, Italy
[3] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
Cloud Computing (CC); DInSAR; Earth surface deformation; Parallel Small BAseline Subset (P-SBAS); APERTURE RADAR INTERFEROMETRY; SURFACE DEFORMATION; TIME-SERIES; DISPLACEMENT FIELD; ALGORITHM; EARTHQUAKE; GENERATION; RESOLUTION;
D O I
10.1109/JSTARS.2016.2598397
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an efficient Cloud Computing (CC) implementation of the Parallel Small BAseline Subset (P-SBAS) algorithm, which is an advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) technique for the generation of Earth surface displacement time series through distributed computing infrastructures. The rationale of our approach consists in properly distributing the large data volumes and the processing tasks involved in the P-SBAS chain among the available (virtual and/or physical) computing nodes of the CC infrastructure, so that each one of these elements can concurrentlywork on data that are physically stored on its own local volume. To do this, both an ad hocmanagement of the data flow and an appropriate scheduling of the parallel jobs have been also implemented to properly handle the high complexity of the P-SBAS workflow. The proposed solution allows minimizing the overall data transfer and network load, thus improving the P-SBAS efficiency and scalability within the exploited CCenvironments. The presented P-SBAS implementation has been extensively validated through two experimental analyses, which have been carried out by exploiting the Amazon Web Services (AWS) Elastic Cloud Compute (EC2) resources. The former analysis involves the processing of a large (128 SAR images) COSMO-SkyMed dataset, which has been performed by exploiting up to 64 computing nodes, and is aimed at demonstrating the P-SBAS scalable performances. The latter allows us to show the P-SBAS capability to generate DInSAR results at a regional scale (150 000 km2 in Southern California) in a very short time (about 9 h), by simultaneously processing 18 ENVISAT frames that correspond to a total of 741 SAR images, exploiting in parallel 144 AWS computing nodes. The presented results confirm the effectiveness of the proposed P-SBASCCsolution, whichmay contribute to further extend the frontiers of the DInSAR investigation at a very large scale.
引用
收藏
页码:802 / 817
页数:16
相关论文
共 50 条
  • [1] A First Assessment of the P-SBAS DInSAR Algorithm Performances Within a Cloud Computing Environment
    Zinno, Ivana
    Elefante, Stefano
    Mossucca, Lorenzo
    De Luca, Claudio
    Manunta, Michele
    Terzo, Olivier
    Lanari, Riccardo
    Casu, Francesco
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (10) : 4675 - 4686
  • [2] Performance analysis of the DInSAR P-SBAS algorithm within AWS Cloud
    Mossucca, L.
    Zinno, I
    Elefante, S.
    De Luca, C.
    Goga, K.
    Terzo, O.
    Casu, F.
    Lanari, R.
    [J]. 2015 9TH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS CISIS 2015, 2015, : 469 - 473
  • [3] Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series
    De Luca, Claudio
    Zinno, Ivana
    Manunta, Michele
    Lanari, Riccardo
    Casu, Francesco
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 202 : 3 - 17
  • [4] SURFACE DEFORMATION MAPPING OF ITALY THROUGH THE P-SBAS DINSAR PROCESSING OF SENTINEL-1 DATA IN A CLOUD COMPUTING ENVIRONMENT
    Zinno, I.
    Bonano, M.
    Buonanno, S.
    Casu, F.
    De Luca, C.
    Lanari, R.
    Manzo, M.
    Manunta, M.
    Zeni, G.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2241 - 2243
  • [5] BIG DINSAR DATA PROCESSING THROUGH THE P-SBAS ALGORITHM
    Elefante, S.
    Zinno, I
    De Luca, C.
    Manunta, M.
    Lanari, R.
    Casu, F.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2696 - 2698
  • [6] A FULLY AUTOMATIC AND CLOUD-BASED P-SBAS DINSAR PIPELINE FOR SENTINEL-1 PROCESSING
    De Luca, C.
    Bonano, M.
    Casu, F.
    Manunta, M.
    Manzo, M.
    Meyer, F.
    Onorato, G.
    Zinno, I
    Lanari, R.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 10015 - 10018
  • [7] Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment
    Lanari, Riccardo
    Bonano, Manuela
    Casu, Francesco
    Luca, Claudio De
    Manunta, Michele
    Manzo, Mariarosaria
    Onorato, Giovanni
    Zinno, Ivana
    [J]. REMOTE SENSING, 2020, 12 (18)
  • [8] UNSUPERVISED ON-DEMAND WEB SERVICE FOR DINSAR PROCESSING: THE P-SBAS IMPLEMENTATION WITHIN THE ESA G-POD ENVIRONMENT
    De Luca, C.
    Cuccu, R.
    Elefante, S.
    Zinno, I.
    Manunta, M.
    Rivolta, G.
    Casola, V.
    Lonari, R.
    Casu, F.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2692 - 2695
  • [9] SBAS-DINSAR TIME SERIES GENERATION ON CLOUD COMPUTING PLATFORMS
    Elefante, S.
    Imperatore, P.
    Zinno, I.
    Manunta, M.
    Mathot, E.
    Brito, F.
    Farres, J.
    Lengert, W.
    Lanari, R.
    Casu, F.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 274 - 277
  • [10] NEW ADVANCES OF THE P-SBAS APPROACH FOR THE GENERATION OF SAOCOM-1 L-BAND DINSAR TIME-SERIES
    De Luca, Claudio
    Roa, Yenni Lorena Belen
    Bonano, Manuela
    Casu, Francesco
    Euillades, Pablo
    Euillades, Leonardo
    Franzese, Marianna
    Manunta, Michele
    Muhammad, Yasir
    Onorato, Giovanni
    Striano, Pasquale
    Zinno, Ivana
    Lanari, Riccardo
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1416 - 1419