Generalized variational inequalities

被引:0
|
作者
Krejcí, P
Laurençot, P
机构
[1] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague 1, Czech Republic
[2] Univ Toulouse 3, CNRS, UMR 5640, F-31062 Toulouse 4, France
[3] WIAS, Berlin, Germany
[4] Inst Elie Cartan, Nancy, France
关键词
hysteresis; evolution variational inequality; Young integral; play operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a rate independent evolution variational inequality with an arbitrary convex closed constraint Z in a Hilbert space X. The main results consist in proving that it is well-posed in the Young integral setting in the space of functions of essentially bounded variation for every Z and in the space of regulated functions provided 0 lies in the interior of Z.
引用
收藏
页码:159 / 183
页数:25
相关论文
共 50 条
  • [1] GENERALIZED VARIATIONAL INEQUALITIES AND GENERALIZED QUASI-VARIATIONAL INEQUALITIES
    张从军
    [J]. Applied Mathematics and Mechanics(English Edition), 1993, (04) : 333 - 344
  • [2] GENERALIZED VARIATIONAL-INEQUALITIES AND GENERALIZED QUASI-VARIATIONAL INEQUALITIES
    XIE, PD
    TAN, KK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 148 (02) : 497 - 508
  • [3] On generalized variational inequalities
    M. Fakhar
    J. Zafarani
    [J]. Journal of Global Optimization, 2009, 43 : 503 - 511
  • [4] On generalized variational inequalities
    Panicucci, B
    Pappalardo, M
    [J]. Variational Analysis and Applications, 2005, 79 : 813 - 826
  • [5] On generalized variational inequalities
    Fakhar, M.
    Zafarani, J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (04) : 503 - 511
  • [6] On the generalized nonlinear variational inequalities and quasi-variational inequalities
    Yu, SJ
    Yao, JC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) : 178 - 193
  • [7] On generalized nonlinear variational inequalities
    Liu, Zeqing
    Gao, Haiyan
    Shim, Soo Hak
    Kang, Shin Min
    [J]. FIXED POINT THEORY AND APPLICATIONS, VOL 7, 2007, 7 : 119 - +
  • [8] On the generalized monotonicity of variational inequalities
    Bai, Min-Ru
    Zhou, Shu-Zi
    Ni, Gu-Yan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (06) : 910 - 917
  • [9] On a class of generalized variational inequalities
    Ahmad, K
    Kazmi, KR
    Siddiqui, ZA
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (04): : 487 - 499
  • [10] GENERALIZED VARIATIONAL-INEQUALITIES
    FANG, SC
    PETERSON, EL
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 38 (03) : 363 - 383