High performance and carbon-deposition resistance metal-supported solid oxide fuel cell with a nickel-manganese spinel modified anode

被引:21
|
作者
Li, Q. [1 ]
Wang, X. [2 ]
Jia, L. [1 ]
Chi, B. [1 ]
Pu, J. [1 ]
Li, J. [1 ]
机构
[1] Huazhong Univ Sci & Technol, Ctr Fuel Cell Innovat, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
[2] Wuhan Text Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Text Fiber Prod, Wuhan 430200, Peoples R China
基金
中国国家自然科学基金;
关键词
Mn/Fe-doped GDC; MnO; Carbon deposition; Performance durability; ENHANCED ELECTROCHEMICAL PERFORMANCE; DIRECT OXIDATION; SOFC ANODES; METHANE; HYDROCARBONS; STABILITY; CATALYST; ALLOYS; LAYER; CO;
D O I
10.1016/j.mtener.2020.100473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To achieve high performance and carbon-deposition resistance, solid oxide fuel cells (SOFCs) with a nickel-10 wt% iron alloy support, a 10 wt% gadolinium doped cerium oxide electrolyte (GDC), a La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode, and a Ni-GDC anode with (modified anode cell, MAC) or without (conventional anode cell, CAC) NiMn2O4 modification are prepared and evaluated with H2 and CH 4 fuels. During the cell fabrication, the GDC in the anode of MAC is doped by Mn and Fe through reaction with NiMn2O4 and Fe diffusion from the support with increased electrical conductivity and catalytic activity; and the Ni granules in the anode is decorated with fine Mn0 particles, which increases their porosity and resistance to agglomeration and carbon deposition. As a result, MAC demonstrates higher performance and durability than CAC, with a maximum power density of 1278 and 1208 mW cm(-2) at 700 degrees C with H-2 and CH4 as the fuel, respectively, in contrast to 998 and 895 mW cm(-2) for CAC. And the cell voltage of MAC fueled by CH4 is maintained on the level of 0.66 V for up to 100 hat 650 degrees C without carbon deposition in the anode, while that of CAC decreases continuously with significant carbon formation. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Spray pyrolysis deposition of electrolyte and anode for metal-supported solid oxide fuel cell
    Xie, Yongsong
    Neagu, Roberto
    Hsu, Ching-Shiung
    Zhang, Xinge
    Deces-Petit, Cyrille
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (04) : B407 - B410
  • [2] Aerosol deposition of anode functional layer for metal-supported solid oxide fuel cells
    Erilin, I. S.
    Burmistrov, I. N.
    Agarkov, D. A.
    Agarkova, E. A.
    Yalovenko, D. V.
    Solovyev, A. A.
    Rabotkin, S. V.
    Pukha, V. E.
    Lyskov, N. V.
    Bredikhin, S. I.
    MATERIALS LETTERS, 2022, 306
  • [3] Aerosol deposition of anode functional layer for metal-supported solid oxide fuel cells
    Erilin, I.S.
    Burmistrov, I.N.
    Agarkov, D.A.
    Agarkova, E.A.
    Yalovenko, D.V.
    Solovyev, A.A.
    Rabotkin, S.V.
    Pukha, V.E.
    Lyskov, N.V.
    Bredikhin, S.I.
    Materials Letters, 2022, 306
  • [4] Metal-Supported Solid Oxide Fuel Cell With High Power Density
    Tucker, M. C.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2015 - 2020
  • [5] Sintering of NiO/YSZ Anode Layers for Metal-Supported Solid Oxide Fuel Cell
    Solovyev, A. A.
    Ionov, I. V.
    Kovalchuk, A. N.
    Kirdyashkin, A. I.
    Maznoy, A. S.
    Kitler, V. D.
    HIGH TECHNOLOGY: RESEARCH AND APPLICATIONS, 2014, 1040 : 155 - +
  • [6] Effect of Anode Thickness on Polarization Resistance for Metal-Supported Microtubular Solid Oxide Fuel Cells
    Sumi, Hirofumi
    Shimada, Hiroyuki
    Yamaguchi, Yuki
    Yamaguchi, Toshiaki
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : F243 - F247
  • [7] High performance metal-supported solid oxide fuel cells with infiltrated electrodes
    Dogdibegovic, Emir
    Wang, Ruofan
    Lau, Grace Y.
    Tucker, M. C.
    JOURNAL OF POWER SOURCES, 2019, 410 : 91 - 98
  • [8] Synthesis of Nickel-Manganese Spinel Oxide Supported on Carbon-Felt Surface to Enhance Electrochemical Capacitor Performance
    Hefnawy, Mahmoud A.
    Abdel-Gaber, Rewaida
    Gomha, Sobhi M.
    Zaki, Magdi E. A.
    Medany, Shymaa S.
    ELECTROCATALYSIS, 2025, : 500 - 512
  • [9] A novel microstructured metal-supported solid oxide fuel cell
    Fernandez-Gonzalez, R.
    Hernandez, E.
    Savvin, S.
    Nunez, P.
    Makradi, A.
    Sabate, N.
    Esquivel, J. P.
    Ruiz-Morales, J. C.
    JOURNAL OF POWER SOURCES, 2014, 272 : 233 - 238
  • [10] Metal-supported Solid Oxide Fuel Cell with Diesel Reformer
    Bae, J.
    Baek, S. W.
    Jeong, J.
    Yoon, S.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 711 - 718