Data-Driven Identification of the Regions of Interest for Fiber Tracking in Patients with Brain Tumors

被引:1
|
作者
Metwali, Hussam [1 ]
De Luca, Alberto [2 ]
Ibrahim, Tamer [3 ]
Leemans, Alexander [2 ]
Samii, Amir [4 ]
机构
[1] Klinikum Weiden, Kliniken Nordoberpfalz AG, Weiden, Germany
[2] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[3] Alexandria Univ, Dept Neurosurg, Alexandria, Egypt
[4] Int Neurosci Inst, Dept Neurosurg, Hannover, Germany
关键词
Directional information; Gradient; Outcome; Preoperative planning; Tractography; IMAGING-BASED TRACTOGRAPHY; FREE-WATER ELIMINATION; DIFFUSION-TENSOR; WHITE-MATTER; PYRAMIDAL TRACT; SPHERICAL DECONVOLUTION; CORPUS-CALLOSUM; MRI; STIMULATION; SURGERY;
D O I
10.1016/j.wneu.2020.07.107
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND: We investigated the added value of combining information from direction-encoded color (DEC) maps with high-resolution structural magnetic resonance imaging scans (T1-weighted images [T1WIs]) to improve the identification of regions of interest (ROIs) for fiber tracking during preoperative planning for patients with brain tumors. METHODS: The dataset included 42 patients with gli-omas and 10 healthy subjects from the Human Connectome Project. For identification of the ROIs, we combined the structural information from high-resolution T1WIs and the directional information from DEC maps. To test our hypothesis, we examined the interrater and intrarater agreement. RESULTS: We identified specific ROIs to extract the main white matter bundles. The directional information from the DEC maps combined with the T1WIs (T1WI-DEC maps) had significantly facilitated ROI identification in patients with brain tumors, especially patients in whom the tracts had been displaced by the mass effect of the tumor. Fiber tracking using the combined T1WI-DEC maps showed significantly greater interand intrarater agreement compared with using either T1WI or DEC maps alone. CONCLUSION: Combining the information from diffusion-derived color-encoded maps with high-resolution anatomical details from structural imaging (T1WI-DEC map), especially in patients with brain tumors, could be useful for accurate identification of the ROIs.
引用
收藏
页码:E275 / E284
页数:10
相关论文
共 50 条
  • [1] Identification of depression subtypes and relevant brain regions using a data-driven approach
    Tokuda, Tomoki
    Yoshimoto, Junichiro
    Shimizu, Yu
    Okada, Go
    Takamura, Masahiro
    Okamoto, Yasumasa
    Yamawaki, Shigeto
    Doya, Kenji
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [2] Identification of depression subtypes and relevant brain regions using a data-driven approach
    Tomoki Tokuda
    Junichiro Yoshimoto
    Yu Shimizu
    Go Okada
    Masahiro Takamura
    Yasumasa Okamoto
    Shigeto Yamawaki
    Kenji Doya
    [J]. Scientific Reports, 8
  • [3] Data-driven regions of interest for longitudinal change in frontotemporal lobar degeneration
    Pankov, Aleksandr
    Binney, Richard J.
    Staffaroni, Adam M.
    Kornak, John
    Attygalle, Suneth
    Schuff, Norbert
    Weiner, Michael W.
    Kramer, Joel H.
    Dickerson, Bradford C.
    Miller, Bruce L.
    Rosen, Howard J.
    [J]. NEUROIMAGE-CLINICAL, 2016, 12 : 332 - 340
  • [4] Intensity/correlation thresholding of FMRI data: Data-driven regions of interest using bridge voxels
    Alexiuk, M. D.
    Pizzi, N. J.
    Pedrycz, W.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN IMAGE AND SIGNAL PROCESSING, 2007, : 194 - 197
  • [5] Data-driven regions of interest for longitudinal change in three variants of frontotemporal lobar degeneration
    Binney, Richard J.
    Pankov, Aleksandr
    Marx, Gabriel
    He, Xuanzie
    McKenna, Faye
    Staffaroni, Adam M.
    Kornak, John
    Attygalle, Suneth
    Boxer, Adam L.
    Schuff, Norbert
    Gorno-Tempini, Maria-Luisa
    Weiner, Michael W.
    Kramer, Joel H.
    Miller, Bruce L.
    Rosen, Howard J.
    [J]. BRAIN AND BEHAVIOR, 2017, 7 (04):
  • [6] Data-driven Regions of Interest for Longitudinal Change in Three Variants of Frontotemporal Lobar Degeneration
    Rosen, H.
    Binney, R.
    Pankov, A.
    Marx, G.
    McKenna, F.
    He, X.
    Staffaroni, A.
    Kornak, J.
    Attygalle, S.
    Boxer, A.
    Schuff, N.
    Gorno-Tempini, M. -L.
    Weiner, M.
    Kramer, J.
    Miller, B.
    [J]. JOURNAL OF NEUROCHEMISTRY, 2016, 138 : 244 - 245
  • [7] Automatic oculomotor nerve identification based on data-driven fiber clustering
    Huang, Jiahao
    Li, Mengjun
    Zeng, Qingrun
    Xie, Lei
    He, Jianzhong
    Chen, Ge
    Liang, Jiantao
    Li, Mingchu
    Feng, Yuanjing
    [J]. HUMAN BRAIN MAPPING, 2022, 43 (07) : 2164 - 2180
  • [8] A Data-Driven Approach for Gaze Tracking
    Huang, Kevin
    Khalil, Mahmoud
    Luciani, Evelyn
    Melesse, Daniel
    Ning, Taikang
    [J]. PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 494 - 499
  • [9] Data-driven identification and control based on optic tracking feedback for robotic systems
    Josué Gómez
    Chidentree Treesatayapun
    América Morales
    [J]. The International Journal of Advanced Manufacturing Technology, 2021, 113 : 1485 - 1503
  • [10] Data-Driven Regions of Interest for Longitudinal Change in Frontotemporal Lobar Degeneration at 3T
    McKenna, Faye
    Marx, Gabriel
    Pankov, Aleksandr
    Binney, Richard
    Suneth, Attygale
    He, Xuanzi
    Dutt, Shubir
    Elofson, Jon
    Kornak, John
    Miller, Bruce
    Rosen, Howard
    [J]. NEUROLOGY, 2016, 86