Bayesian Lasso with neighborhood regression method for Gaussian graphical model

被引:2
|
作者
Li, Fan-qun [1 ,2 ]
Zhang, Xin-sheng [1 ]
机构
[1] Fudan Univ, Sch Management, Dept Stat, Shanghai 200433, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
gaussian graphical model; regression; precision matrix; Bayesian Lasso; Frobenius loss; NON-DECOMPOSABLE GRAPHS; SELECTION; LIKELIHOOD;
D O I
10.1007/s10255-017-0676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover, the proposed method can provide symmetric confidence intervals of all entries of the precision matrix.
引用
下载
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [1] Bayesian Lasso with Neighborhood Regression Method for Gaussian Graphical Model
    Fan-qun LI
    Xin-sheng ZHANG
    Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 485 - 496
  • [2] Bayesian Lasso with neighborhood regression method for Gaussian graphical model
    Fan-qun Li
    Xin-sheng Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 485 - 496
  • [3] A note on the Lasso for Gaussian graphical model selection
    Meinshausen, Nicolai
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (07) : 880 - 884
  • [4] GRAPHICAL LASSO FOR HIGH-DIMENSIONAL COMPLEX GAUSSIAN GRAPHICAL MODEL SELECTION
    Tugnait, Jitendra K.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2952 - 2956
  • [5] Bayesian lasso regression
    Hans, Chris
    BIOMETRIKA, 2009, 96 (04) : 835 - 845
  • [6] Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso
    Yang, Eunho
    Lozano, Aurelie C.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Model uncertainty and variable selection in Bayesian lasso regression
    Chris Hans
    Statistics and Computing, 2010, 20 : 221 - 229
  • [8] PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION
    Kawano, Shuichi
    Hoshina, Ibuki
    Shimamura, Kaito
    Konishi, Sadanori
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2015, 28 (01): : 67 - 82
  • [9] Model uncertainty and variable selection in Bayesian lasso regression
    Hans, Chris
    STATISTICS AND COMPUTING, 2010, 20 (02) : 221 - 229
  • [10] The Bayesian adaptive lasso regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    MATHEMATICAL BIOSCIENCES, 2018, 303 : 75 - 82