Interface engineering of ultrathin Cu(In,Ga)Se2 solar cells on reflective back contacts

被引:19
|
作者
Gouillart, Louis [1 ,2 ]
Cattoni, Andrea [1 ]
Chen, Wei-Chao [3 ]
Goffard, Julie [1 ]
Riekehr, Lars [3 ]
Keller, Jan [3 ]
Jubault, Marie [4 ]
Naghavi, Negar [2 ]
Edoff, Marika [3 ]
Collin, Stephane [1 ]
机构
[1] Univ Paris Saclay, CNRS, Ctr Nanosci & Nanotechnol C2N, 10 Blvd Thomas Gobert, F-91120 Palaiseau, France
[2] CNRS, UMR 9006, IPVF, 18 Blvd Thomas Gobert, F-91120 Palaiseau, France
[3] Uppsala Univ, Div Solid State Elect, Angstrom Solar Ctr, POB 534, SE-75121 Uppsala, Sweden
[4] EDF R&D, IPVF, 18 Blvd Thomas Gobert, F-91120 Palaiseau, France
来源
PROGRESS IN PHOTOVOLTAICS | 2021年 / 29卷 / 02期
基金
欧盟地平线“2020”;
关键词
CIGS; interface engineering; reflective back contact; silver; ultrathin solar cells; CONDUCTING OXIDE BACK; PASSIVATION; EFFICIENCY; IMPACT; FILMS;
D O I
10.1002/pip.3359
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
  • [1] Ultrathin Cu(In,Ga)Se2 solar cells with Ag-based reflective back contacts
    Gouillart, Louis
    Cattoni, Andrea
    Chen, Wei-Chao
    Zeitouny, Joya
    Riekehr, Lars
    Keller, Jan
    Jubault, Marie
    Naghavi, Negar
    Edoff, Marika
    Collin, Stephane
    [J]. 2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1481 - 1484
  • [2] Development of reflective back contacts for high-efficiency ultrathin Cu(In,Ga)Se2 solar cells
    Gouillart, Louis
    Cattoni, Andrea
    Goffard, Julie
    Donsanti, Frederique
    Patriarche, Gilles
    Jubault, Marie
    Naghavi, Negar
    Collin, Stephane
    [J]. THIN SOLID FILMS, 2019, 672 (1-6) : 1 - 6
  • [3] Reflective Back Contacts for Ultrathin Cu(In,Ga)Se2-Based Solar Cells
    Gouillart, Louis
    Chen, Wei-Chao
    Cattoni, Andrea
    Goffard, Julie
    Riekehr, Lars
    Keller, Jan
    Jubault, Marie
    Naghavi, Negar
    Edoff, Marika
    Collin, Stéphane
    [J]. IEEE Journal of Photovoltaics, 2020, 10 (01): : 250 - 254
  • [4] Reflective Back Contacts for Ultrathin Cu(In,Ga)Se2-Based Solar Cells
    Gouillart, Louis
    Chen, Wei-Chao
    Cattoni, Andrea
    Goffard, Julie
    Riekehr, Lars
    Keller, Jan
    Jubault, Marie
    Naghavi, Negar
    Edoff, Marika
    Collin, Stephane
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (01): : 250 - 254
  • [5] Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells
    Erfurth, F.
    Jehl, Z.
    Bouttemy, M.
    Dahan, N.
    Tran-Van, P.
    Gerard, I.
    Etcheberry, A.
    Greffet, J. -J.
    Powalla, M.
    Voorwinden, G.
    Lincot, D.
    Guillemoles, J. F.
    Naghavi, N.
    [J]. APPLIED SURFACE SCIENCE, 2012, 258 (07) : 3058 - 3061
  • [6] Ultrathin Cu(In,Ga)Se2 based solar cells
    Naghavi, N.
    Mollica, F.
    Goffard, J.
    Posada, J.
    Duchatelet, A.
    Jubault, M.
    Donsanti, F.
    Cattoni, A.
    Collin, S.
    Grand, P. P.
    Greffet, J. J.
    Lincot, D.
    [J]. THIN SOLID FILMS, 2017, 633 : 55 - 60
  • [7] Ultrathin Cu(In,Ga)Se2 Solar Cells with a Passivated Back Interface: A Comparative Study between Mo and In2O3:Sn Back Contacts
    Li, Yong
    Yin, Guanchao
    Tu, Ye
    Sedaghat, Setareh
    Gao, Yao
    Schmid, Martina
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 7956 - 7964
  • [8] Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector
    de Wild, Jessica
    Birant, Gizem
    Brammertz, Guy
    Meuris, Marc
    Poortmans, Jef
    Vermang, Bart
    [J]. ENERGIES, 2021, 14 (14)
  • [9] Surface engineering in Cu(In,Ga)Se2 solar cells
    Schleussner, Sebastian Michael
    Pettersson, Jonas
    Torndahl, Tobias
    Edoff, Marika
    [J]. PROGRESS IN PHOTOVOLTAICS, 2013, 21 (04): : 561 - 568
  • [10] Chemical and structural characterization of Cu(In, Ga)Se2/Mo interface in Cu(In, Ga)Se2 solar cells
    Matsushita Electric Industry Co, Ltd, Kyoto, Japan
    [J]. Jpn J Appl Phys Part 2 Letter, 10 A (L1253-L1256):