The effect of zirconia substitution on the high-temperature transformation of the monoclinic-prime phase in yttrium tantalate

被引:39
|
作者
Flamant, Quentin [1 ]
Gurak, Mary [1 ]
Clarke, David R. [1 ]
机构
[1] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Phase trasformations; Yttrium tantalate; Zirconia; Raman spectroscopy; X-ray diffraction; THERMAL-CONDUCTIVITY;
D O I
10.1016/j.jeurceramsoc.2018.04.002
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Amorphous yttrium tantalate, as well as solid solutions containing zirconia, transform on heating to a monoclinic-prime phase and then, with further heating, to a crystalline tetragonal (T) solid solution phase at 1450 degrees C. On subsequent cooling the tetragonal phase converts by a second-order displacive transformation to a different monoclinic phase not to the monoclinic-prime phase. On subsequent reheating and cooling, the phase transformation occurs between the monoclinic (M) and tetragonal phases, and the monoclinic-prime phase cannot be recovered. The limit of zirconia solubility in both the monoclinic-prime and monoclinic phases lies between 25 and 28 m/o ZrO2, consistent with previous first-principles calculations. The monoclinic-prime phase is stable up to at least 1400 degrees C for 100 h for zirconia concentrations from 0 to 60 m/o ZrO2. This temperature exceeds the temperature of the equilibrium M-T phase transformation suggesting that the monoclinic-prime phase transforms directly to the tetragonal phase by a reconstructive transformation and is unaffected by the zirconia in solid solution.
引用
收藏
页码:3925 / 3931
页数:7
相关论文
共 50 条
  • [1] The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying
    Shian, Samuel
    Sarin, Pankaj
    Gurak, Mary
    Baram, Mor
    Kriven, Waltraud M.
    Clarke, David R.
    ACTA MATERIALIA, 2014, 69 : 196 - 202
  • [2] First-principles calculations of the high-temperature phase transformation in yttrium tantalate
    Feng, Jing
    Shian, Samuel
    Xiao, Bing
    Clarke, David R.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [3] High-temperature fracture toughness of mullite with monoclinic zirconia
    Glymond, Daniel
    Vick, Michael J.
    Giuliani, Finn
    Vandeperre, Luc J.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (04) : 1570 - 1577
  • [4] High-temperature calorimetry of zirconia: Heat capacity and thermodynamics of the monoclinic-tetragonal phase transition
    Moriya, Y
    Navrotsky, A
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2006, 38 (03): : 211 - 223
  • [5] HIGH-TEMPERATURE CREEP BEHAVIOR OF POLYCRYSTALLINE YTTRIUM STABILIZED ZIRCONIA
    TALTY, PK
    FEHRENBACHER, LL
    WIMMER, JM
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (04): : 352 - 352
  • [6] CALCULATED HIGH-TEMPERATURE ELASTIC CONSTANTS FOR ZERO POROSITY MONOCLINIC ZIRCONIA
    SMITH, CF
    CRANDALL, WB
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1964, 47 (12) : 624 - 627
  • [7] HIGH-TEMPERATURE PHASE INSTABILITY IN YTTRIUM ORTHOALUMINATE
    ABELL, JS
    HARRIS, IR
    JOURNAL OF MATERIALS SCIENCE, 1972, 7 (09) : 1088 - &
  • [8] High-Temperature Stable Zirconia Particles Doped with Yttrium, Lanthanum, and Gadolinium
    Leib, Elisabeth W.
    Pasquarelli, Robert M.
    Blankenburg, Malte
    Mueller, Martin
    Schreyer, Andreas
    Janssen, Rolf
    Weller, Horst
    Vossmeyer, Tobias
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (09) : 645 - 655
  • [9] PURITY EFFECT ON THE HIGH-TEMPERATURE PHASE-TRANSFORMATION IN SM
    BURKOV, AT
    VEDERNIKOV, MV
    NIKIFOROVA, TV
    RYTUS, NN
    FIZIKA TVERDOGO TELA, 1983, 25 (02): : 570 - 572
  • [10] HIGH-TEMPERATURE PHASE TRANSFORMATION IN BERYLLIA
    BAKER, TW
    BALDOCK, PJ
    NATURE, 1962, 193 (4821) : 1172 - &