Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations

被引:255
|
作者
Reich, S [1 ]
机构
[1] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
关键词
D O I
10.1006/jcph.1999.6372
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A number of conservative PDEs, like various wave equations, allow for a multisymplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplecticity under a symplectic method for Hamiltonian ODEs. We also discuss the issue of conservation of energy and momentum. Since time discretization by a Gauss-Legendre method is computational rather expensive, we suggest several semi-explicit multisymplectic methods based on Gauss-Legendre collocation in space and explicit or linearly implicit symplectic discretizations in time. (C) 2000 Academic Press.
引用
收藏
页码:473 / 499
页数:27
相关论文
共 50 条
  • [1] On multi-symplectic partitioned Runge-Kutta methods for Hamiltonian wave equations
    Li, Qinghong
    Song, Yongzhong
    Wang, Yushun
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 36 - 43
  • [2] Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations
    Liu, HY
    Zhang, K
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) : 252 - 271
  • [3] Multi-symplectic Runge-Kutta methods for nonlinear dirac equations
    Hong, JL
    Li, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 448 - 472
  • [4] Stochastic multi-symplectic Runge-Kutta methods for stochastic Hamiltonian PDEs
    Zhang, Liying
    Ji, Lihai
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 396 - 406
  • [5] Numerical Dispersion Relation of Multi-symplectic Runge-Kutta Methods for Hamiltonian PDEs
    张然
    刘宏宇
    张凯
    Northeastern Mathematical Journal, 2006, (03) : 349 - 356
  • [6] Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
    胡伟鹏
    邓子辰
    韩松梅
    范玮
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (08) : 1027 - 1034
  • [7] Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
    Hu, Wei-peng
    Deng, Zi-chen
    Han, Song-mei
    Fan, Wei
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (08) : 1027 - 1034
  • [8] Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
    Wei-peng Hu
    Zi-chen Deng
    Song-mei Han
    Wei Fa
    Applied Mathematics and Mechanics, 2009, 30 : 1027 - 1034
  • [9] Explicit multi-symplectic methods for Hamiltonian wave equations
    Hong, Jialin
    Jiang, Shanshan
    Li, Chun
    Liu, Hongyu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (04) : 662 - 683
  • [10] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387