Equality of higher-rank numerical ranges of matrices

被引:6
|
作者
Chang, Chi-Tung [1 ]
Gau, Hwa-Long [2 ]
Wang, Kuo-Zhong [3 ]
机构
[1] Feng Chia Univ, Dept Appl Math, Taichung 40724, Taiwan
[2] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
[3] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
来源
LINEAR & MULTILINEAR ALGEBRA | 2014年 / 62卷 / 05期
关键词
15A60; higher-rank numerical range; numerical range; compression; principal submatrix;
D O I
10.1080/03081087.2013.811500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the rank- numerical range of an -by- complex matrix . We give a characterization for , where , via the compressions and the principal submatrices of . As an application, the matrix satisfying , where is the classical numerical range of and , is under consideration. We show that if for some , then is unitarily similar to , where is a 2-by-2 matrix, is a -by- matrix and .
引用
收藏
页码:626 / 638
页数:13
相关论文
共 50 条
  • [1] HIGHER-RANK NUMERICAL RANGES OF UNITARY AND NORMAL MATRICES
    Choi, Man-Duen
    Holbrook, John A.
    Kribs, David W.
    Zyczkowski, Karol
    [J]. OPERATORS AND MATRICES, 2007, 1 (03): : 409 - 426
  • [2] On Kippenhahn curves and higher-rank numerical ranges of some matrices
    Bebiano, Natalia
    da Providencia, Joao
    Spitkovsky, Ilya M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 629 : 246 - 257
  • [3] Indefinite higher-rank numerical ranges
    Bebiano, N.
    da Providencia, J.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (09): : 1009 - 1026
  • [4] Geometry of higher-rank numerical ranges
    Choi, Man-Duen
    Giesinger, Michael
    Holbrook, John A.
    Kribs, David W.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2): : 53 - 64
  • [5] HIGHER-RANK NUMERICAL RANGES AND DILATIONS
    Gau, Hwa-Long
    Li, Chi-Kwong
    Wu, Pei Yuan
    [J]. JOURNAL OF OPERATOR THEORY, 2010, 63 (01) : 181 - 189
  • [6] Higher-rank numerical ranges and Kippenhahn polynomials
    Gau, Hwa-Long
    Wu, Pei Yuan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) : 3054 - 3061
  • [7] Higher-rank numerical ranges and compression problems
    Choi, Man-Duen
    Kribs, David W.
    Zyczkowski, Karol
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 828 - 839
  • [8] HIGHER RANK NUMERICAL RANGES OF RECTANGULAR MATRICES
    Zahraei, Mohsen
    Aghamollaei, Gholamreza
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (02): : 133 - 142
  • [9] HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES
    Gau, Hwa-Long
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (01) : 23 - 43
  • [10] An elementary constructive approach to the higher-rank numerical ranges of unitary matrices and quantum error-correcting codes
    Kazakov, A. Ya
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (25)