3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration

被引:252
|
作者
Yew, Zi Jian [1 ]
Lee, Gim Hee [1 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
来源
关键词
Point cloud; Registration; Deep learning; Weak supervision; OBJECT RECOGNITION; SURFACE; IMAGES;
D O I
10.1007/978-3-030-01267-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the 3DFeat-Net which learns both 3D feature detector and descriptor for point cloud matching using weak supervision. Unlike many existing works, we do not require manual annotation of matching point clusters. Instead, we leverage on alignment and attention mechanisms to learn feature correspondences from GPS/INS tagged 3D point clouds without explicitly specifying them. We create training and benchmark outdoor Lidar datasets, and experiments show that 3DFeat-Net obtains state-of-the-art performance on these gravity-aligned datasets.
引用
收藏
页码:630 / 646
页数:17
相关论文
共 50 条
  • [1] WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration
    Li, Lei
    Fu, Hongbo
    Ovsjanikov, Maks
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (07) : 3368 - 3379
  • [2] A survey on weakly supervised 3D point cloud semantic segmentation
    Wang, Jingyi
    Liu, Yu
    Tan, Hanlin
    Zhang, Maojun
    IET COMPUTER VISION, 2024, 18 (03) : 329 - 342
  • [3] Local features of 3D point cloud registration based on Siamese network learning
    Sui, Yinling
    Qin, Zhiyuan
    Tong, Xiaochong
    Li, He
    Ding, Lu
    Lai, Guangling
    REMOTE SENSING LETTERS, 2021, 12 (08) : 730 - 738
  • [4] SAP-Net: A Simple and Robust 3D Point Cloud Registration Network Based on Local Shape Features
    Li, Jinlong
    Li, Yuntao
    Long, Jiang
    Zhang, Yu
    Gao, Xiaorong
    SENSORS, 2021, 21 (21)
  • [5] WSSIC-Net: Weakly-Supervised Semantic Instance Completion of 3D Point Cloud Scenes
    Fu, Zhiheng
    Guo, Yulan
    Chen, Minglin
    Hu, Qingyong
    Laga, Hamid
    Boussaid, Farid
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 2008 - 2019
  • [6] Exploring Self-Supervised Learning for 3D Point Cloud Registration
    Yuan, Mingzhi
    Huang, Qiao
    Shen, Ao
    Huang, Xiaoshui
    Wang, Manning
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 25 - 31
  • [7] A fast and robust local descriptor for 3D point cloud registration
    Yang, Jiaqi
    Cao, Zhiguo
    Zhang, Qian
    INFORMATION SCIENCES, 2016, 346 : 163 - 179
  • [8] Towards a Weakly Supervised Framework for 3D Point Cloud Object Detection and Annotation
    Meng, Qinghao
    Wang, Wenguan
    Zhou, Tianfei
    Shen, Jianbing
    Jia, Yunde
    Van Gool, Luc
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4454 - 4468
  • [9] Optimization of the 3D Point Cloud Registration Algorithm Based on FPFH Features
    Sun, Ruiyang
    Zhang, Enzhong
    Mu, Deqiang
    Ji, Shijun
    Zhang, Ziqiang
    Liu, Hongwei
    Fu, Zheng
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [10] Research on registration algorithm based on neighborhood features for 3D point cloud
    Liu, Yongshan
    Gu, Xiaoying
    ICIC Express Letters, 2015, 9 (11): : 2957 - 2964