Strong delay-independent stability of linear delay systems

被引:7
|
作者
de Oliveira, Fulvia S. S. [1 ]
Souza, Fernando O. [2 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, Av Antonio Carlos 6627, BR-31270010 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Elect Engn, Av Antonio Carlos 6627, BR-31270010 Belo Horizonte, MG, Brazil
关键词
TIME; INEQUALITY;
D O I
10.1016/j.jfranklin.2019.05.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new necessary and sufficient condition for testing the strong delay-independent stability of linear systems subject to a single delay. The proposed method follows from the use of matrix polynomials constraints and the Kalman-Yakubovich-Popov lemma The resulting condition can be checked exactly by solving a feasibility problem in terms of a linear matrix inequality (LMI). Simple numerical examples are given to show the effectiveness of the proposed method. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5421 / 5433
页数:13
相关论文
共 50 条
  • [1] On Delay-independent Stability Criteria for Linear Time-delay Systems
    Ai-Guo Wu~* Guang-Ren Duan Center for Control Theory and Guidance Technology
    [J]. Machine Intelligence Research, 2007, (01) : 95 - 100
  • [2] On Delay-independent Stability Criteria for Linear Time-delay Systems
    Wu, Ai-Guo
    Duan, Guang-Ren
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2007, 4 (01) : 95 - 100
  • [3] On delay-independent stability criteria for linear time-delay systems
    Wu A.-G.
    Duan G.-R.
    [J]. International Journal of Automation and Computing, 2007, 4 (1) : 95 - 100
  • [4] Strong delay-independent stability analysis of neutral delay systems with commensurate delays
    Song, Yunxia
    Jiang, Huaiyuan
    Yang, Xuefei
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (14): : 7600 - 7619
  • [5] Delay-independent robust stability of uncertain linear systems
    Luo, J.S.
    Johnson, A.
    van den Bosch, P.P.J.
    [J]. Systems and Control Letters, 1995, 24 (01): : 33 - 39
  • [6] DELAY-INDEPENDENT ASYMPTOTIC STABILITY OF LINEAR-SYSTEMS
    THOWSEN, A
    [J]. IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (03): : 73 - 75
  • [7] Generalized Dixon Resultant for Strong Delay-Independent Stability of Linear Systems With Multiple Delays
    Cai, Jiazhi
    Gao, Qingbin
    Liu, Yifan
    Wu, Aiguo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2697 - 2704
  • [8] Delay-independent stability of homogeneous systems
    Aleksandrov, A. Yu.
    Zhabko, A. P.
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 34 : 43 - 50
  • [9] An exact LMI condition for the strong delay-independent stability analysis of neutral delay systems
    Souza, Fernando O.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (17) : 5375 - 5385
  • [10] Delay-Independent Stability of Reset Systems
    Banos, Alfonso
    Barreiro, Antonio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 341 - 346