Nonlinear finite volume discretization for transient diffusion problems on general meshes

被引:2
|
作者
Quenjel, El Houssaine [1 ]
机构
[1] Univ Cote dAzur, Inria, CNRS, LJAD,Coffee Team, Parc Valrose, F-06108 Nice 02, France
关键词
Nonlinear diffusion equations; Discrete duality finite volume scheme; Coercivity; Positivity; Convergence; Second order accuracy;
D O I
10.1016/j.apnum.2020.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear discrete duality finite volume scheme is proposed for time-dependent diffusion equations. The model example is written in a new formulation giving rise to similar nonlinearities for both the diffusion and the potential functions. A natural finite volume discretization is built on this particular problem's structure. The fluxes are generically approximated thanks to a key fractional average. The point of this strategy is to promote coercivity and scheme's stability simultaneously. The existence of positive solutions is guaranteed. The theoretical convergence of the nonlinear scheme is established using practical compactness tools. Numerical results are performed in order to highlight the second order accuracy of the methodology and the positiveness of solutions on distorted meshes. (c) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 168
页数:21
相关论文
共 50 条
  • [1] Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes
    Schneider, Martin
    Agelas, Leo
    Enchery, Guillaume
    Flemisch, Bernd
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 351 : 80 - 107
  • [2] A monotone nonlinear finite volume method for approximating diffusion operators on general meshes
    Camier, Jean-Sylvain
    Hermeline, Francois
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) : 496 - 519
  • [3] FINITE VOLUME SCHEME FOR DIFFUSION PROBLEMS ON GENERAL MESHES APPLYING MONOTONY CONSTRAINTS
    Angelini, O.
    Chavant, C.
    Chenier, E.
    Eymard, R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4193 - 4213
  • [4] CONDITIONING OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION PROBLEMS WITH GENERAL SIMPLICIAL MESHES
    Wang, Xiang
    Huang, Weizhang
    Li, Yonghai
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2665 - 2696
  • [5] Hybrid Finite Volume Discretization of Linear Elasticity Models on General Meshes
    Di Pietro, Daniele A.
    Eymard, Robert
    Lemaire, Simon
    Masson, Roland
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 331 - +
  • [6] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes
    Agelas, Leo
    Masson, Roland
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) : 1007 - 1012
  • [7] A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes
    Gao, Yanni
    Yuan, Guangwei
    Wang, Shuai
    Hang, Xudeng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
  • [8] A novel finite volume discretization method for advection-diffusion systems on stretched meshes
    Merrick, D. G.
    Malan, A. G.
    van Rooyen, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 220 - 242
  • [9] General fully implicit discretization of the diffusion term for the finite volume method
    Darwish, M.
    Mangani, L.
    Moukalled, F.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2017, 71 (06) : 506 - 532
  • [10] Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes
    Arbogast, Todd
    Huang, Chieh-Sen
    Zhao, Xikai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399