Long-time behaviour of discretizations of the simple pendulum equation

被引:12
|
作者
Cieslinski, Jan L. [1 ]
Ratkiewicz, Boguslaw [1 ,2 ]
机构
[1] Uniwersytet Bialymstoku, Wydzial Fizyki, PL-15424 Bialystok, Poland
[2] Adam Mickiewicz Univ, Wydzial Fizyki, Poznan, Poland
关键词
INTEGRATION; STABILITY; MAPPINGS;
D O I
10.1088/1751-8113/42/10/105204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. The chosen numerical schemes are either symplectic maps or integrable (energy-preserving) maps, or both. Therefore, they preserve qualitative features of solutions (such as periodicity). We describe characteristic periodic time dependences of numerical estimates of the period and the amplitude, and explain them as systematic numerical by-effects produced by any method. Finally, we propose a new numerical scheme which is a modification of the discrete gradient method. This modified discrete gradient method preserves (almost exactly) the period of small oscillations for any time step.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] On the Long-time Behaviour of the Quasilinear Parabolic Equation
    Geredeli, P. G.
    Khanmamedov, A. Kh.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1987 - 1990
  • [2] LONG-TIME BEHAVIOUR OF AN ADVECTION-SELECTION EQUATION
    Guilberteau, Jules
    Pouchol, Camille
    Duteil, Nastassia Pouradier
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (07): : 3097 - 3136
  • [3] Spatial resolution of different discretizations over long-time for the Dirac equation with small potentials
    Feng, Yue
    Yin, Jia
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [4] Existence and long-time behaviour of weak solutions for the Mullins equation
    Chugunova, Marina
    Taranets, Roman
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6550 - 6561
  • [5] Long-time behaviour of solutions to a singular heat equation with an application to hydrodynamics
    Kitavtsev, Georgy
    Taranets, Roman M.
    [J]. INTERFACES AND FREE BOUNDARIES, 2020, 22 (02) : 157 - 174
  • [6] Long-Time Behaviour and Phase Transitions for the Mckean–Vlasov Equation on the Torus
    J. A. Carrillo
    R. S. Gvalani
    G. A. Pavliotis
    A. Schlichting
    [J]. Archive for Rational Mechanics and Analysis, 2020, 235 : 635 - 690
  • [7] Long-time regime and scaling of correlations in a simple model with glassy behaviour
    Godreche, C
    Luck, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 1915 - 1928
  • [8] Long-Time Behaviour of the Solutions for the Multidimensional Kolmogorov-Spieqel-Sivashinsky Equation
    Bo Ling GUO
    Bi Xiang WANG Institute of Applied Physics and Computational Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2002, 18 (03) : 579 - 596
  • [9] Long-Time Behaviour and Phase Transitions for the Mckean-Vlasov Equation on the Torus
    Carrillo, A.
    Gvalani, R. S.
    Pavliotis, G. A.
    Schlichting, A.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (01) : 635 - 690
  • [10] Long-Time Behaviour of the Solutions for the Multidimensional Kolmogorov-Spieqel-Sivashinsky Equation
    Guo B.L.
    Wang B.X.
    [J]. Acta Mathematica Sinica, 2002, 18 (3) : 579 - 596