Computer Analysis of Knee by Magnetic Resonance Imaging Data

被引:4
|
作者
Suponenkovs, Artjoms [1 ]
Markovics, Zigurds [1 ]
Platkajis, Ardis [2 ]
机构
[1] Riga Tech Univ, Fac Comp Sci & Informat Technol, Setas Str 1, LV-1048 Riga, Latvia
[2] Med Acad Latvia, Dzirciema Str 16, LV-1007 Riga, Latvia
来源
ICTE 2016 | 2017年 / 104卷
关键词
Early diagnosis of osteoarthritis; Magnetic resonance imaging; Medical imaging; Knee joint; Cartilage; Image segmentation; Relaxation time;
D O I
10.1016/j.procs.2017.01.145
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The examination of knee cartilage degradation by magnetic resonance imaging (MRI) data is essential due to the reduction in physical activity of the population and a rising number of patients with osteoarthritis(OA). The main aim of this publication is to show a new approach for analyzing knee tissue by MRI data. The present paper investigates the problems of relaxation times calculation, medical image segmentation and statistical texture features calculation. Proposed paper describes an approach for medical image segmentation, relaxation times calculation and statistical texture features calculation. An important aspect of analysis of articular cartilage relaxation times changing is illustrated in the experimental part. The experimental part of the publication also describes the dependence between organic structure and relaxation times. The proposed approach the obtained results can be useful for early OA diagnostics. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 50 条
  • [1] Bibliometric Analysis of Magnetic Resonance Imaging in Knee Osteoarthritides
    Sui, Yuhan
    Li, Zhaoxu
    Wang, Shengtao
    Chen, Mingzhou
    POSTEPY HIGIENY I MEDYCYNY DOSWIADCZALNEJ, 2025, 79 (01): : 7 - 15
  • [2] Development of methods for analysis of knee articular cartilage degeneration by magnetic resonance imaging data
    Suponenkovs, Artjoms
    Glazs, Aleksandrs
    Platkajis, Ardis
    2016 CONGRESS ON INDUSTRIAL AND APPLIED LIFE SCIENCES & MATHEMATICS (NATURE-MATH 2016), 2017, 818
  • [3] Magnetic resonance imaging of the knee
    Chien, Alexander
    Weaver, Jennifer S.
    Kinne, Erica
    Omar, Imran
    POLISH JOURNAL OF RADIOLOGY, 2020, 85 : E509 - E531
  • [4] Magnetic Resonance Imaging of the Knee
    Hash, Thomas W., II
    SPORTS HEALTH-A MULTIDISCIPLINARY APPROACH, 2013, 5 (01): : 78 - 107
  • [5] Magnetic resonance imaging of the knee
    Prickett, WD
    Ward, SI
    Matava, MJ
    SPORTS MEDICINE, 2001, 31 (14) : 997 - 1019
  • [6] Magnetic Resonance Imaging of the Knee
    William D. Prickett
    Sabrina I. Ward
    Matthew J. Matava
    Sports Medicine, 2001, 31 : 997 - 1019
  • [7] Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging
    Fu, Ja-Chih
    Lin, Chen-Chiang
    Wang, Chih-Nan
    Ou, Yang-Kun
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2013, 30 (02) : 67 - 77
  • [8] Diseased Region Detection of Longitudinal Knee Magnetic Resonance Imaging Data
    Huang, Chao
    Shan, Liang
    Charles, H. Cecil
    Wirth, Wolfgang
    Niethammer, Marc
    Zhu, Hongtu
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) : 1914 - 1927
  • [9] MAGNETIC-RESONANCE-IMAGING OF THE KNEE
    KURSUNOGLUBRAHME, S
    RESNICK, D
    ORTHOPEDIC CLINICS OF NORTH AMERICA, 1990, 21 (03) : 561 - 572
  • [10] MAGNETIC-RESONANCE-IMAGING OF THE KNEE
    WEISSMAN, BN
    HUSSAIN, S
    RHEUMATIC DISEASE CLINICS OF NORTH AMERICA, 1991, 17 (03) : 637 - 668